Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Available Online

Tags / Keywords

Available Online

166 result(s) found.

Sort by

You searched for

  • Collection Biodiversity Conservation
    X
  • Tags / Keywords problem definition
    X
Costs and bene? ts for biodiversity following rat and cat eradication on Te Hauturu-o-Toi/Little Barrier Island
Biodiversity Conservation, BRB
Available Online

Bell, E.

,

Campbell, J.

,

Cassey, P.

,

Ewen, J.G.

,

Green, C.

,

Gri?ths, R.

,

Joyce, L.

,

Rayner, M.

,

Towns, D.

,

Toy, R.

,

Veitch, C.R.

,

Wade, L.

,

Walle, R.

2019
Considerable bene?ts can be achieved for indigenous biodiversity when invasive vertebrates are removed from islands. In New Zealand, two logistically challenging eradications were undertaken, one to remove cats (Felis catus) and the other Paci?c rats (Rattus exulans) from Te Hauturu-o-Toi/Little Barrier Island (Hauturu). Here we document the short- and long-term impacts of these interventions on the biodiversity of Hauturu. We also assess the extent to which predicted outcomes were re?ected in the measured responses for a wide range of species. Short-term impacts of the eradication program encompassed individual mortality for some native species but no measurable impact to populations. In contrast, at least 11 native vertebrates and one native invertebrate species increased in abundance after rat and cat removal. Fifteen of 34 plant species monitored had signi?cantly more seedlings on Hauturu after rat eradication compared with control islands, indicating future changes in forest composition. Several native species previously not recorded on the island were discovered, including the New Zealand storm petrel (Fregetta maoriana) (formerly considered extinct), the forest ringlet butter?y (Dodonidia helmsi) and eight species of aquatic invertebrate. The chevron skink (Oligosoma homalonotum) has been found in increasing numbers and tuatara (Sphenodon punctatus), raised in captivity on the island, are now re-established and breeding in the wild. These results illustrate an island gradually recovering after a long period of modi?cation. We conclude that more success stories such as Hauturu must be told if we are to allay the public’s concerns about such eradication campaigns. And more public support is required if the conservation community is to tackle invasive species at a scale commensurate with the threats they pose.
Island invasives: scaling up to meet the challenge. Proceedings of the international conference on island invasives 2017
Biodiversity Conservation, BRB
Available Online

Godwin, J.

,

Heard, N.

,

Serr, M.

2019
House mice are significant invasive pests, particularly on islands without native mammalian predators. As part of a multi-institutional project aimed at suppressing invasive mouse populations on islands, we aim to create heavily male-biased sex ratios with the goal of causing the populations to crash. Effective implementation of this approach will depend on engineered F1 wild-lab males being effective secondary invaders that can mate successfully. As a first step in assessing this possibility, we are characterising genetic and behavioural differences between Mus musculus strains in terms of mating and fecundity using wild house mice derived from an invasive population on the Farallon Islands (MmF), a laboratory strain C57BL/6/129 (tw2), and F1 wild-lab off spring. Mice with the ‘t allele’ (tw2) have a naturally occurring gene drive system. To assess fertility in F1 wild-lab crosses, tw2 males were paired with wild-derived females from the Farallon Islands (MmF). Results of these matings indicate litter sizes are comparable but that weaned pup and adult wild-lab mice are heavier in mass. Next, we initiated tests of male competitiveness using larger (3 m2) enclosures with enrichment. We introduced both an MmF and a tw2-bearing male to two MmF females to assess mating outcomes. Preliminary results of these experiments show none of the off spring carried the t-allele. However, performing the same experiment with F1 wild-lab males instead of a full lab background resulted in 70% of off spring carrying the tw2 allele. This indicates that F1 wild-lab males may be able to successfully compete and secondarily invade. It will be important in subsequent experiments to determine what characteristics contribute to secondary invasion success. More generally, a better understanding of characteristics contributing to overall success in increasingly complex and naturalistic environments will be critical in determining the potential of a gene drive-based eradication approach for invasive mice on islands.
A potential new tool for the toolbox: assessing gene drives for eradicating invasive rodent populations
Biodiversity Conservation, BRB
Available Online

Brown, P.R.

,

Campbell, K.J.

,

Delborne, J.

,

Godwin, J.

,

Gould, F.

,

Howald, G.R.

,

Kanavy, D.M.

,

Kuiken, T.

,

Packard, H.

,

Piaggio, A.

,

Saah, J.R.

,

Serr, M.

,

Shiels, A.

,

Thomas, P.

,

Threadgill, D.

,

Tompkins, D.M.

2019
Invasive rodents have significant negative impacts on island biodiversity. All but the smallest of rodent eradications currently rely on island-wide rodenticide applications. Although significant advances have been made in mitigating unintended impacts, rodent eradication on inhabited islands remains extremely challenging. Current tools restrict eradication efforts to fewer than 15% of islands with critically endangered or endangered species threatened by invasive rodents. The Genetic Biocontrol of Invasive Rodents partnership is an interdisciplinary collaboration to develop and evaluate gene drive technology for eradicating invasive rodent populations on islands. Technological approaches currently being investigated include the production of multiple strains of Mus musculus with a modified form of the native t-complex, or a CRISPR gene drive, carrying genes or mechanisms that determine sex. These systems have the potential to skew the sex ratio of off spring to approach 100% single-sex, which could result in population collapse. One goal proposed is to test the ability of constructs to spread and increase in frequency in M. musculus populations in biosecure, captive settings and undertake modelling to inform development and potential deployment of these systems. Structured ecologically-based risk assessments are proposed, along with social and cultural engagement to assess the acceptability of releasing a gene drive system. Work will be guided by an external ethics advisory board. Partners are from three countries with significant regulatory capacity (USA, Australia, New Zealand). Thus, we will seek data sharing agreements so that results from experiments may be used within all three countries and treat regulatory requirements as a minimum. Species-specific, scalable, and socially acceptable new eradication tools could produce substantial biodiversity benefits not possible with current technologies. Gene drive innovation may provide such a tool for invasive species management and be potentially transformative and worthy of exploring in an inclusive, responsible, and ethical manner.
Black rat eradication on Italian islands: planning forward by looking backward
Biodiversity Conservation, BRB
Available Online

Baccetti, N.

,

Capizzi, D.

,

Gotti, C.

,

Pelliccioni, E. Raganella

,

Petrassi, F.

,

Sozio, G.

,

Sposimo, P.

2019
Since 1999, the black rat (Rattus rattus) has been eradicated from 14 Italian islands, and eradication is ongoing on a further five islands. Most projects were funded by the European Union (EU) Life Programme. Over the years, eradication techniques have been improved and adapted to different situations, including aerial bait distribution on islands with large inaccessible areas, which otherwise would have relied on a manual bait distribution. A priority list of eradications on islands, which was compiled ten years ago, has been met to a large extent, as rats have been successfully eradicated from many islands of great importance to breeding seabirds. Despite some cases of re-invasion occurring in early projects, advances in biosecurity measures have allowed for eradications on islands where this was previously considered unfeasible due to a high risk of re-invasion. This paper reports on black rat eradication work performed on Italian Mediterranean islands with small villages. We show biodiversity benefits of these programmes, but also qualitatively address socio-economic and health impacts on local communities. Eradication projects have faced new obstacles, due to recent changes in legislation which complicated the application of rodenticides and made it very difficult to get permission for aerial distribution of bait on some of the priority islands.