Skip to main content

Search the SPREP Catalogue

Refine Search Results

Related Countries

Tags / Keywords

Language

Available Online

Related Countries

Tags / Keywords

Available Online

14 result(s) found.

Sort by

You searched for

Invasive alien species on islands: impacts, distribution, interactions and management
BRB
Available Online

Holmes, Nick D

,

Meyer, Jean-Yves

,

Pagad, Shyama

,

Russell, James C.

2017
Invasive alien species (IASs) on islands have broad impacts across biodiversity, agriculture, economy, health and culture, which tend to be stronger than on continents. Across small-island developing states (SIDSs), although only a small number of IASs are widely distributed, many more, including those with greatest impact, are found on only a small number of islands. Patterns of island invasion are not consistent across SIDS geographic regions, with differences attributable to correlated patterns in island biogeography and human development. We identify 15 of the most globally prevalent IASs on islands. IAS impacts on islands are exacerbated through interactions with a number of other global change threats, including over-exploitation, agricultural intensification, urban development and climate change. Biosecurity is critical in preventing IAS invasion of islands. Eradication of IASs on islands is possible at early stages of invasion, but otherwise is largely restricted to invasive mammals, or otherwise control is the only option. Future directions in IAS management and research on islands must consider IASs within a broader portfolio of threats to species, ecosystems and people’s livelihoods on islands. We advocate for stronger collaborations among island countries and territories faced with the same IASs in similar socio-ecological environments.
Seabirds enhance coral reef productivity and functioning in the absence of invasive rats
BRB
Available Online

Carr, Peter.

,

Graham, Nicholas A. J.

,

Hoey, Andrew S.

,

Jennings, Simon.

,

MacNeil, M. Aaron

,

Wilson, Shaun K.

2018
Biotic connectivity between ecosystems can provide major transport of organic matter and nutrients, influencing ecosystem structure and productivity, yet the implications are poorly understood owing to human disruptions of natural flows. When abundant, seabirds feeding in the open ocean transport large quantities of nutrients onto islands, enhancing the productivity of island fauna and flora. Whether leaching of these nutrients back into the sea influences the productivity, structure and functioning of adjacent coral reef ecosystems is not known. Here we address this question using a rare natural experiment in the Chagos Archipelago, in which some islands are rat-infested and others are rat-free. We found that seabird densities and nitrogen deposition rates are 760 and 251 times higher, respectively, on islands where humans have not introduced rats. Consequently, rat-free islands had substantially higher nitrogen stable isotope (?15N) values in soils and shrubs, reflecting pelagic nutrient sources. These higher values of ?15N were also apparent in macroalgae, filter-feeding sponges, turf algae and fish on adjacent coral reefs. Herbivorous damselfish on reefs adjacent to the rat-free islands grew faster, and fish communities had higher biomass across trophic feeding groups, with 48% greater overall biomass. Rates of two critical ecosystem functions, grazing and bioerosion, were 3.2 and 3.8 times higher, respectively, adjacent to rat-free islands. Collectively, these results reveal how rat introductions disrupt nutrient flows among pelagic, island and coral reef ecosystems. Thus, rat eradication on oceanic islands should be a high conservation priority as it is likely to benefit terrestrial ecosystems and enhance coral reef productivity and functioning by restoring seabird-derived nutrient subsidies from large areas of ocean.
Spatial Economic Analysis of Early Detection and Rapid Response Strategies for an Invasive Species
BRB
Available Online

Burnett, Kimberly

,

Kaiser, Brooks

2010
Economic impacts from invasive species, conveyed as expected damages to assets from invasion and expected costs of successful prevention and/or removal, may vary significantly across spatially differentiated landscapes. We develop a spatial-dynamic model for optimal early detection and rapid-response (EDRR) policies, commonly exploited in the management of potential invaders around the world, and apply it to the case of the Brown treesnake in Oahu, Hawaii. EDRR consists of search activities beyond the ports of entry, where search (and potentially removal) efforts are targeted toward areas where credible evidence suggests the presence of an invader. EDRR costs are a spatially dependent variable related to the ease or difficulty of searching an area, while damages are assumed to be a population dependent variable. A myopic strategy in which search only occurs when and where current expected net returns are positive is attractive to managers, and, we find, significantly lowers present value losses (by $270m over 30 years). We find further that in the tradeoff between search costs and damages avoided, early and aggressive measures that search some high priority areas beyond points of entry even when current costs of search exceed current damages can save the island more ($295m over 30 years). Extensive or non-targeted search is not advised however.