Skip to main content

Search the SPREP Catalogue

Refine Search Results

Language

Available Online

Available Online

12 result(s) found.

Sort by

You searched for

  • Material Type Article
    X
  • Publication Year 2011
    X
Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems
Available Online

Catford, J.

,

Pysek, P.

,

Richardson, D.

,

Vesk, P.

2011
Biological invasions are a global phenomenon that threatens biodiversity, and few, if any, ecosystems are free from alien species. The outcome of human-mediated introductions is affected by the invasiveness of species and invasibility of ecosystems, but research has primarily focused on defining, characterizing and identifying invasive species; ecosystem invasibility has received much less attention. A prerequisite for characterizing invasibility is the ability to compare levels of invasion across ecosystems. In this paper, we aim to identify the best way to quantify the level of invasion by nonnative animals and plants by reviewing the advantages and disadvantages of different metrics. We explore how interpretation and choice of these measures can depend on the objective of a study or management intervention. Based on our review, we recommend two invasion indices and illustrate their use by applying them to two case studies. Relative alien species richness and relative alien species abundance indicate the contribution that alien species make to a community. They are easy to measure, can be applied to various taxa, are independent of scale and are comparable across regions and ecosystems, and historical data are often available. The relationship between relative alien richness and abundance can indicate the presence of dominant alien species and the trajectory of invasion over time and can highlight ecosystems and sites that are heavily invaded or especially susceptible to invasion. Splitting species into functional groups and examining invasion patterns of transformer species may be particularly instructive for gauging effects of alien invasion on ecosystem structure and function. Establishing standard, transparent ways to define and quantify invasion level will facilitate meaningful comparisons among studies, ecosystem types and regions. It is essential for progress in ecology and will help guide ecosystem restoration and management.
Archipelago-wide island restoration in the Galapagos Islands: Reducing costs of invaisve mammal eradication programs and reinvasion risk
BRB
Available Online

Campbell, Karl J.

,

Carrion, Victor

,

Cruz, Felipe

,

Donian, C. Josh

,

Lavoie, Christian

2011
Invasive alien mammals are the major driver of biodiversity loss and ecosystem degradation on islands. Over the past three decades, invasive mammal eradication from islands has become one of society's most powerful tools for preventing extinction of insular endemics and restoring insular ecosystems. As practitioners tackle larger islands for restoration, three factors will heavily influence success and outcomes: the degree of local support, the ability to mitigate for non-target impacts, and the ability to eradicate non-native species more cost-effectively. Investments in removing invasive species, however, must be weighed against the risk of reintroduction. One way to reduce reintroduction risks is to eradicate the target invasive species from an entire archipelago, and thus eliminate readily available sources. We illustrate the costs and benefits of this approach with the efforts to remove invasive goats from the Galápagos Islands. Project Isabela, the world's largest island restoration effort to date, removed > 140,000 goats from > 500,000 ha for a cost of US$10.5 million. Leveraging the capacity built during Project Isabela, and given that goat reintroductions have been common over the past decade, we implemented an archipelago-wide goat eradication strategy. Feral goats remain on three islands in the archipelago, and removal efforts are underway. Efforts on the Galápagos Islands demonstrate that for some species, island size is no longer the limiting factor with respect to eradication. Rather, bureaucratic processes, financing, political will, and stakeholder approval appear to be the new challenges. Eradication efforts have delivered a suite of biodiversity benefits that are in the process of revealing themselves. The costs of rectifying intentional reintroductions are high in terms of financial and human resources. Reducing the archipelago-wide goat density to low levels is a technical approach to reducing reintroduction risk in the short-term, and is being complemented with a longer-term social approach focused on education and governance.
Eradicating Pacific rats (Rattus exulans) from Nu'utele and Nu'ulua Islands, Samoa - some of the challenges of operating in the tropcial Pacific
BRB
Available Online

Butler, D.J.

,

Tipamaa, F.T.

,

Tye, A.

,

Wylie, M.

2011
The restoration of the small offshore islands of Nu’utele (108ha) and Nu’ulua (25ha) has long been identified as a priority for biodiversity conservation in Samoa. The first step towards restoration was the aerial spreading of brodifacoum to eradicate Pacific rats (Rattus exulans) in August 2009. Procedures for the eradication followed those used in New Zealand and involved technical experts from that country. Particular challenges included a tight operational time-frame (two months), technical problems magnified by the remote location, variable reliability of weather forecasting,working with the local community, and mitigating rodenticide exposure risks for the friendly ground-dove (Gallicolumba stairi) (IUCN: vulnerable). Solutions to these challenges are discussed as guidance for similar projects in remote island locations. Follow-up monitoring between August 2009 and March 2010 indicated that the eradication had been successful, but Pacific rats were detected on Nu’utele in May 2011. Nu’ulua has yet to be rechecked in 2011. DNA analyses are being organised to determine if these rats are survivors or re-invaders.