Skip to main content

Search the SPREP Catalogue

Refine Search Results

Related Countries

Language

Available Online

Related Countries

Available Online

10 result(s) found.

Sort by

You searched for

  • Author Griffiths, R.
    X
  • Collection BRB
    X
Successes and failures of rat eradications on tropical islands: a comparative review of eight recent projects
Biodiversity Conservation, BRB
Available Online

Brown, D.

,

Cranwell, S.

,

Cuthbert, R.J.

,

Griffiths, R.

,

Howald, G.

,

Keitt, B.

,

Pitt, W.C.

,

Tershy, B.

,

Wegmann, A.

2019
Rat eradication is a highly effective tool for conserving biodiversity, but one that requires considerable planning eff ort, a high level of precision during implementation and carries no guarantee of success. Overall, rates of success are generally high but lower for tropical islands where most biodiversity is at risk. We completed a qualitative comparative review on four successful and four unsuccessful tropical rat eradication projects to better understand the factors influencing the success of tropical rat eradications and shed light on how the risk of future failures can be minimised. Observations of juvenile rats surviving more than four weeks after bait application on two islands validate the previously considered theoretical risk that unweaned rats can remain isolated from exposure to rodent bait for a period. Juvenile rats emerging after bait was no longer readily available may have been the cause of some or all the project failures. The elevated availability of natural resources (primarily fruiting or seeding plants) generated by rainfall prior to project implementation(documented for three of the unsuccessful projects) may also have contributed to project failure by reducing the likelihood that all rats would consume sufficient rodent bait or compounding other factors such as rodent breeding. Our analysis highlights that rat eradication can be achieved on tropical islands but suggests that events that cannot be predicted with certainty in some tropical regions can act individually or in concert to reduce the likelihood of project success. We recommend research to determine the relative importance of these factors in the fate of future tropical projects and suggest that existing practices be re-evaluated for tropical island rodent eradications.
Scaling down (cliffs) to meet the challenge: the Shiants’ black rat eradication
Biodiversity Conservation, BRB
Available Online

Bambini, L.

,

Bell, E.

,

Campbell, G.

,

Churchyard, T.

,

Douse, A.

,

Floyd, K.

,

Ibbotson, J.

,

Main, C.E.

,

Nicolson, T.

,

Reid, R.

,

Taylor, P.R.

,

Tayton, J.

,

Varnham, K.

,

Whittington, W.

2019
A successful ground-based eradication of black rats (Rattus rattus) was undertaken on the remote, uninhabited Shiant Isles of north-west Scotland over winter (14 October–28 March) 2015–16. The rat eradication was carried out as part of the Shiants Seabird Recovery Project, which aims to secure long-term breeding habitat for protected seabirds and to attract European storm petrels and Manx shearwaters to nest on the Shiants. Throughout the eradication operation, teams were stationed on two of the three main Shiant islands (Eilean an Tighe, Eilean Mhuire), with access to the third (Garbh Eilean) via a boulder causeway from Eilean an Tighe. Bait (Contrac® blocks containing the anticoagulant bromadiolone 0.005% w/w), was deployed in a grid of 1,183 bait stations covering all areas of the islands and sea stacks. Bait stations were set 50 m apart, with intervals reduced to 25 m in coastal areas of predicted high rat density. Difficult areas were accessed by boat and cliff s of ~120 m in height were accessed by abseiling down ropes made safe using either bolted anchors or ground stakes. The team of staff and volunteers worked through difficult conditions, deploying bait and monitoring intensively for any surviving rats using a combination of tools. The islands were declared rat free in March 2018. This ambitious and challenging project has greatly enhanced UK capacity in rodent eradications for the purposes of conservation.
House mice on islands: management and lessons from New Zealand
Biodiversity Conservation, BRB
Available Online

Birmingham,C.

,

Broome, K.

,

Brown, D.

,

Brown, K.

,

Corson, P.

,

Cox, A.

,

Golding, C.

,

Griffiths, R.

,

Murphy, E.

2019
The impacts of house mice (Mus musculus), one of four invasive rodent species in New Zealand, are only clearly revealed on islands and fenced sanctuaries without rats and other invasive predators which suppress mouse populations, influence their behaviour, and confound their impacts. When the sole invasive mammal on islands, mice can reach high densities and influence ecosystems in similar ways to rats. Eradicating mice from islands is not as difficult as previously thought, if best practice techniques developed and refined in New Zealand are applied in association with diligent planning and implementation. Adopting this best practice approach has resulted in successful eradication of mice from several islands in New Zealand and elsewhere including some of the largest ever targeted for mice; in multi-species eradications; and where mouse populations were still expanding after recent invasion. Prevention of mice reaching rodent-free islands remains an ongoing challenge as they are inveterate stowaways, potentially better swimmers than currently thought, and prolific breeders in predator-free habitat. However, emergent mouse populations can be detected with conventional surveillance tools and eradicated before becoming fully established if decisive action is taken early enough. The invasion and eventual eradication of mice on Maud Island provides a case study to illustrate New Zealand-based lessons around mouse biosecurity and eradication.
Long term rodent control in Rdum tal-Madonna yelkouan shearwater colony
Biodiversity Conservation, BRB
Available Online

Cabello, J.S. Santiago

,

Lago, P.

,

Varnham, K.

2019
Rodent predation on eggs and chicks is one of the main threats to procellariiform species in the Mediterranean, where the black rat (Rattus rattus) and brown rat (R. norvegicus) have been present on many islands for centuries. The yelkouan shearwater (Puffinus yelkouan) is an endemic Mediterranean seabird species classified as vulnerable. Malta holds up to 10% of the global population; the largest colony, Rdum tal-Madonna (RM), protected as a Natura 2000 site, hosts around 500 breeding pairs. This colony has been monitored since its discovery in 1969. A very low reproductive success due to rat predation was noticed in the late 1990s to early 2000s. In 2007 a seasonal rodent control programme was established during the breeding season of yelkouan shearwater to reduce rat predation on eggs and chicks. Rodent control took place between 2007 and 2010 and was reviewed and continued from 2012 to 2017. Breeding success since 2007 has been higher than 80%. In two other colonies with rat presence and where rodent control did not take place, the breeding success in 2016 and 2017 was substantially lower than in the colony with the rodent control programme. The European storm-petrel (Hydrobates pelagicus melitensis) only breeds in rat-free areas like remote sea caves or islets around the Maltese islands. In 2014, the first breeding attempt by European storm-petrel was recorded on the Maltese mainland at RM with a chick fledging successfully for the first time in 2016. The ongoing LIFE Arcipelagu Garnija project is assessing rat predation in all Maltese yelkouan shearwater colonies in order to establish predator control in the most important yelkouan shearwater breeding sites in 2018.
Applying lessons learnt from tropical rodent eradications: a second attempt to remove invasive rats from Desecheo National Wildlife Refuge, Puerto Rico
Biodiversity Conservation, BRB
Available Online

Figuerola-Hernandez, C.E.

,

Griffiths, R.

,

Herrera-Giraldo, J.L.

,

Howald, G.R.

,

Keitt, B.

,

Silander, S.

,

Swinnerton, K.

,

Will, D.J.

2019
The introduction of invasive rats, goats, and rhesus macaques to Desecheo National Wildlife Refuge, Puerto Rico led to the extirpation of regionally signifi cant seabird colonies and negatively impacted plant and endemic reptile species. In 2012, following the successful removal of goats and macaques from Desecheo, an attempt to remove black rats using aerially broadcast rodenticide and bait stations was unsuccessful. A review of the operation suggested that the most likely contributors to the failure were: unusually high availability of alternative foods resulting from higher than average rainfall, and insufficient bait availability. In 2016, a second, successful attempt to remove rats was conducted that incorporated best practice guidelines developed during a workshop that focused on addressing the higher failure rate observed when removing rats from tropical islands. Project partners developed a decision-making process to assess the risks to success posed by environmental conditions and established go/no-go decision points leading up to implementation. Observed environmental conditions appeared suitable, and the operation was completed using aerial broadcast of bait in two applications with a target sowing rate of 34 kg/ha separated by 22 days. Application rates achieved on the ground were stratified such that anticipated high risk areas in the cliff s and valleys received additional bait. We consider the following to be key to the success of the second attempt: 1) monitoring environmental conditions prior to the operation, and proceeding only if conditions were conducive to success, 2) reinterpretation of bait availability data using the lower 99% confidence interval to inform application rates and ensure sufficient coverage across the entire island, 3) treating the two applications as independent, 4) increasing the interval between applications, 5) seeking regulatory approval to give the operational team sufficient flexibility to ensure a minimum application rate at every point on the island, and 6) being responsive to operational monitoring and making any necessary adjustments.
The eradication of black rats (Rattus rattus) from Dog Island, Anguilla, using ground-based techniques
Biodiversity Conservation, BRB
Available Online

Bell, E.

,

Connor, R.

,

Daltry, J.

,

Mukhida, F.

,

Varnham, K.

2019
Rat eradication techniques developed in New Zealand are a proven method for removing invasive rodents from islands worldwide. This technology moved rapidly from ground-based bait station operations to aerial application of rodenticides. Rat eradications on tropical islands using similar methods, have not always been as successful as those in temperate regions. As most previous eradications in the Caribbean have been on islands smaller than 50 ha, the eradication of black rats (Rattus rattus) from 207 ha Dog Island was a significant increase in size. Reptile and seabird populations on Dog Island had been in decline for a number of years and black rats were identified as the most likely factor. Following the feasibility study in 2007, the Dog Island Recovery Project was launched in 2011. This was a multiple-year project incorporating a ground-based eradication with establishment of biosecurity procedures to prevent reinvasion, alongside long-term monitoring of native species. Bait stations with cereal-based wax blocks containing brodifacoum at 0.005% w/w were established on a 30–50 m grid over the island. Interference with bait stations by non-target invertebrates, particularly crabs, was high and bait stations required moving or elevating to avoid this. However, there was no evidence of any non-target animals being killed or injured by the bait. Eradication success was confirmed in 2014.