Skip to main content

Search the SPREP Catalogue

Refine Search Results

Related Countries

Language

Publication Year

Material Type

Available Online

Related Countries

Publication Year

Material Type

Available Online

7 result(s) found.

Sort by

You searched for

  • Author Broome, K.
    X
  • Collection BRB
    X
Ten years after feral goat eradication: the active restoration of plant communities on Guadalupe Island, Mexico
Biodiversity Conservation, BRB
Available Online

Aguirre-Muñoz, A.

,

Cárdenas-Tapia, A.

,

García-Carreón, J.S.

,

Hernández-Montoya, J.C.

,

Luna-Mendoza, L.

,

Luvianos-Colín, S.

,

Méndez-Sánchez, F.

,

Puebla-Hernández, O.

,

Torres-Aguilar, M.

2019
As the ?rst step towards the ecological restoration of its islands, Mexico has completed 60 eradications of invasive mammals thanks to a strong partnership between Grupo de Ecología y Conservación de Islas, A.C. (GECI), the federal government, local ?shing communities, academia, and private donors. The removal of invasive mammals has led to the dramatic recovery of the islands’ ecosystems. On Guadalupe Island, after completing the goat eradication in 2007, the native vegetation started to recover. Plants considered extinct or extirpated have been rediscovered, and plant species new to the island have been recorded. However, in order to achieve the island’s full recovery, the active restoration of degraded soils and vegetation are needed. To date, GECI, in collaboration with the National Forestry Commission (CONAFOR) and the National Commission for Natural Protected Areas (CONANP), is implementing a 700 ha project to accelerate the restoration of the native vegetation communities. The project involves reforestation, erosion control, and ? re prevention actions on different plant communities: forests and sage scrub. An on-site nursery has been established, seedlings—mostly from endemic trees—are being grown, and on-site reforestation planting has started. Up to June 2018, we have planted almost 40,000 trees, and will produce 160,000 seedlings during this year. Mechanical methods to control and prevent erosion have been used as we have installed more than 2,400 m of contour barriers, 57 m3 of dams, and rehabilitated ?rebreaks. The actions will continue: the long-term goal being the comprehensive restoration of the vegetation communities devastated by feral goats. The Guadalupe Island experience will be useful to inform the restoration of other Mexican islands.
Recovery and current status of seabirds on the Baja California Pacific Islands, Mexico, following restoration actions
Biodiversity Conservation, BRB
Available Online

Aguilar-Vargas, A.

,

Aguirre-Muñoz, A.

,

Aztorga-Ornelas, A.

,

Bedolla-Guzmán, Y.

,

Bravo-Hernández, E.

,

Corrales-Sauceda, M.

,

Cárdenas-Tapia, A.

,

Fabila-Blanco, A.

,

Félix-Lizárraga, M.

,

Hernández-Montoya, J.

,

Hernández-Ríos, A.

,

Latofski-Robles, M.

,

Luna-Mendoza, L.

,

Méndez-Sánchez, F.

,

Ortiz-Alcaraz, A.

,

Rojas-Mayoral, E.

,

Solís-Carlos, F.

,

Torres-García, F.

2019
The Baja California Pacifc Islands, Mexico, are globally important breeding sites for 22 seabird species and subspecies. In the past, several populations were extirpated or reduced due to invasive mammals, human disturbance, and contaminants. Over the past two decades, we have removed invasive predators and, for the last decade, we have been implementing a Seabird Restoration Programme on eight groups of islands: Coronado, Todos Santos, San Martín, San Jerónimo, San Benito, Natividad, San Roque, and Asunción. This programme includes monitoring; social attraction techniques; removal of invasive vegetation; reducing human disturbance; and an environmental learning and biosecurity programme. Here, we summarise historical extirpations and recolonisations during the last two decades of restoration actions, and we update the status of breeding species after more than a decade. To date, from 27 historically extirpated populations, 80% have returned since the ?rst eradication in 1995. Social attraction techniques were key in recolonisations of Cassin’s auklet (Ptychoramphus aleuticus), royal tern (Thalasseus maximus), and elegant tern (T. elegans). A total of 19 species breed on these islands, four more species than a decade ago, including 12 new records. The most abundant seabirds, black-vented shearwater (Puffnus opisthomelas), Cassin’s auklet, western gull (Larus occidentalis), and Brandt’s cormorant (Phalacrocorax penicillatus), have shown a remarkable population increase. Current threats include the potential reintroduction of invasive mammals, guano mining, recreational activities, pollution, and commercial ?sheries. To maintain these conservation gains in the long-term it is necessary to continue implementing restoration actions and reinforcing protection on these important natural protected areas.
The history of the aerial application of rodenticide in New Zealand
Biodiversity Conservation, BRB
Available Online

Broome, K.

,

Garden, P.

,

McClelland, P.

2019
Following the incursion of rats (Rattus rattus) on Taukihepa (Big South Cape Island; 93.9 km²) off southern New Zealand in 1963, and the subsequent extirpation of several endemic species, the New Zealand Wildlife Service realised that, contrary to general belief at the time, introduced predators do not reach a natural balance with native species and that a safe breeding habitat for an increasing number of ‘at risk’ species was urgently needed. Off shore islands offered the best option for providing predator free habitat but there was a limited number of predator-free islands available and most were very small. Eradicating rodents on larger islands to provide a wider range and greater area of habitats was required and hand treating these larger areas using trapping and hand application of toxicants, the only methods available at the time, proved problematic and often impossible. Helicopters had been used to distribute bait for the control of rabbits and brushtail possums in the past but eradication of any particular predator species was considered ‘not feasible’. The development of a GPS-based aircraft guidance system, a suitable bait product, specialised bait delivery systems and second-generation anti-coagulant toxicants changed that. Now islands as large as South Georgia (3,900 km²) have been treated using this method
House mice on islands: management and lessons from New Zealand
Biodiversity Conservation, BRB
Available Online

Birmingham,C.

,

Broome, K.

,

Brown, D.

,

Brown, K.

,

Corson, P.

,

Cox, A.

,

Golding, C.

,

Griffiths, R.

,

Murphy, E.

2019
The impacts of house mice (Mus musculus), one of four invasive rodent species in New Zealand, are only clearly revealed on islands and fenced sanctuaries without rats and other invasive predators which suppress mouse populations, influence their behaviour, and confound their impacts. When the sole invasive mammal on islands, mice can reach high densities and influence ecosystems in similar ways to rats. Eradicating mice from islands is not as difficult as previously thought, if best practice techniques developed and refined in New Zealand are applied in association with diligent planning and implementation. Adopting this best practice approach has resulted in successful eradication of mice from several islands in New Zealand and elsewhere including some of the largest ever targeted for mice; in multi-species eradications; and where mouse populations were still expanding after recent invasion. Prevention of mice reaching rodent-free islands remains an ongoing challenge as they are inveterate stowaways, potentially better swimmers than currently thought, and prolific breeders in predator-free habitat. However, emergent mouse populations can be detected with conventional surveillance tools and eradicated before becoming fully established if decisive action is taken early enough. The invasion and eventual eradication of mice on Maud Island provides a case study to illustrate New Zealand-based lessons around mouse biosecurity and eradication.
Improving the efficiency of aerial rodent eradications by means of the numerical estimation of rodenticide density
Biodiversity Conservation, BRB
Available Online

Aguirre-Muñoz, A.

,

Méndez-Sánchez, F.A.

,

Rojas-Mayoral, B.

,

Rojas-Mayoral, E.

2019
Invasive rodents are present on approximately 80% of the world’s islands and constitute one of the most serious threats to island biodiversity and ecosystem functioning. The eradication of rodents is central to island conservation eff orts and the aerial broadcast of rodenticide bait is the preferred dispersal method. To improve the efficiency of rodent eradication campaigns, the generation of accurate and real-time bait density maps is required. Creating maps to estimate the spatial dispersion of bait on the ground has been carried out using traditional GIS methodologies, which are based on limiting assumptions and are time intensive. To improve accuracy and expedite the evaluation of aerial operations, we developed an algorithm for the numerical estimation of rodenticide density (NERD). The NERD algorithm performs calculations with increased accuracy, displaying results almost in real-time. NERD describes the relationship between bait density, the mass fl ow rate of rodenticide through the bait bucket, and helicopter speed and produces maps of bait density on the ground. NERD also facilitates the planning of helicopter fl ight paths and allows for the instant identification of areas with low or high bait density. During the recent and successful rodent eradication campaign on Banco Chinchorro in Mexico, carried out during 2015, NERD results were used to enable dynamic decision-making in the fi eld and to ensure the efficient use of resources.
Feasibility of eradicating the large white butterfly (Pieris brassicae) from New Zealand: data gathering to inform decisions about the feasibility of eradication
Biodiversity Conservation, BRB
Available Online

Broome, K.

,

Brown, K.

,

Green, C.

,

Phillips, C.B.

,

Toft, R.

,

Walker, G.

2019
Pieris brassicae, large white butter?y, was ?rst found in New Zealand in Nelson in May 2010. The Ministry for Primary Industries (MPI) responded with a monitoring programme until November 2012 when the Department of Conservation (DOC) commenced an eradication programme. DOC was highly motivated to eradicate P. brassicae by the risk it posed to New Zealand endemic cress species, some of which are already nearly extinct. DOC eliminated the butter?y from Nelson in less than four years at a cost of ca. NZ$5 million. This is the ?rst time globally that a butter?y has been purposefully eradicated. Variation in estimates of bene?ts, costs, the e?cacy of detection and control tools, and the probability of eradication success all contributed to uncertainty about the feasibility. Cost bene?t analyses can contribute to assessing feasibility but are prone to inaccurate assumptions when data are limited, and other feasibility questions are equally important in considering the best course of action. Uncertainty does not equate to risk and reducing uncertainty through data gathering can inform feasibility and decision making while increasing the probability of eradication success.