Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Available Online

Tags / Keywords

Available Online

69 result(s) found.

Sort by

You searched for

  • Publisher International Union for Nature Conservation (IUCN)
    X
  • Tags / Keywords management action
    X
Eradication of invasive animals and other island restoration practices in Seychelles: achievements, challenges and scaling up perspectives
Biodiversity Conservation, BRB
Available Online

Rocamora, G.

2019
In recent decades Seychelles has accumulated extensive experience in the management of invasive species and other island restoration practices. Non-government organisations (NGOs), governmental, parastatal and private stakeholders have conducted successful programmes to control and eradicate invasive animals and plants, particularly on small islands of high biodiversity value. Biosecurity protocols have been implemented to prevent (re)infestations. With at least 50 vertebrate populations (33 mammal, 16 bird and one reptile) from 14 different species successfully eradicated, Seychelles is the third country in the world after Australia and the USA for invasive vertebrate eradications from tropical islands, and the seventh when considering all countries. Twenty-four islands have bene?ted from invasive vertebrate eradications and other ecosystem restoration processes to create refuges for native biodiversity. About 470 ha of woodland have been rehabilitated through replanting and recovery of native vegetation, and at least 36 successful island translocations of native birds and reptiles have been conducted. This includes 16 conservation introductions or reintroductions of six endemic land birds (all but one threatened), two of a terrapin species and 18 of Aldabra giant tortoises. Recovery of native species and natural recolonisations have occurred on islands where invasive predators have been removed. As a result, four globally threatened endemic land birds have been down-listed in the IUCN Red List and dozens of other native species including seabirds, land birds, reptiles, invertebrates and plants have also bene?ted. Future challenges include increasing the proportion of the country’s land area free of rats and cats from 3.9% to potentially 15.4%, mainly in the outer islands, and 50% in the long term if Aldabra and Cosmoledo are considered. Factors limiting future eradications and translocations are discussed. Alternative conservation approaches such as ‘mainland-islands’ are recommended for large islands, and the development of partnerships with nature-based tourism is encouraged to help fund further restoration.
Ten years after feral goat eradication: the active restoration of plant communities on Guadalupe Island, Mexico
Biodiversity Conservation, BRB
Available Online

Aguirre-Muñoz, A.

,

Cárdenas-Tapia, A.

,

García-Carreón, J.S.

,

Hernández-Montoya, J.C.

,

Luna-Mendoza, L.

,

Luvianos-Colín, S.

,

Méndez-Sánchez, F.

,

Puebla-Hernández, O.

,

Torres-Aguilar, M.

2019
As the ?rst step towards the ecological restoration of its islands, Mexico has completed 60 eradications of invasive mammals thanks to a strong partnership between Grupo de Ecología y Conservación de Islas, A.C. (GECI), the federal government, local ?shing communities, academia, and private donors. The removal of invasive mammals has led to the dramatic recovery of the islands’ ecosystems. On Guadalupe Island, after completing the goat eradication in 2007, the native vegetation started to recover. Plants considered extinct or extirpated have been rediscovered, and plant species new to the island have been recorded. However, in order to achieve the island’s full recovery, the active restoration of degraded soils and vegetation are needed. To date, GECI, in collaboration with the National Forestry Commission (CONAFOR) and the National Commission for Natural Protected Areas (CONANP), is implementing a 700 ha project to accelerate the restoration of the native vegetation communities. The project involves reforestation, erosion control, and ? re prevention actions on different plant communities: forests and sage scrub. An on-site nursery has been established, seedlings—mostly from endemic trees—are being grown, and on-site reforestation planting has started. Up to June 2018, we have planted almost 40,000 trees, and will produce 160,000 seedlings during this year. Mechanical methods to control and prevent erosion have been used as we have installed more than 2,400 m of contour barriers, 57 m3 of dams, and rehabilitated ?rebreaks. The actions will continue: the long-term goal being the comprehensive restoration of the vegetation communities devastated by feral goats. The Guadalupe Island experience will be useful to inform the restoration of other Mexican islands.
Canna seabird recovery project: 10 years on
Biodiversity Conservation, BRB
Available Online
2019
Rats were eradicated in 2005–2006 from the islands of Canna and Sanday, Scotland (total area 1,320 ha). Poison bait was laid from December 2005 onwards and the last rat was killed in February 2006. An intensive period of monitoring over the next two years con?rmed that no rats remained on the islands. Seabirds have been monitored on Canna for nearly 50 years and some species have shown good evidence of recovery since the eradication. Other species have not recovered and this may have been due to mortality caused by food shortages or storm events which have been impacting seabirds in the region. These regional changes in pressures affecting the seabird populations make the interpretation of the impacts of the rat eradication programme much more difficult. Atlantic puffins, formerly con?ned to off shore stacks, have recolonised sites on the mainland of Canna and a count of over 2,000 was recorded in 2016. Manx shearwaters, which had ceased nesting in the monitored colony have made a slow recovery to one or two pairs in 2016. Productivity has also increased from a low of 0.2 chicks per nest in the 1990s to 0.74 in 2017. European shags nesting in boulder colonies were most susceptible to rat predation. One such colony has recovered from 45 nests in 2005 to 75 in 2016 and productivity increased from less than 0.7 chicks per nest to an average of 1.6 following eradication. Populations of shags nesting in cliff locations have shown no recovery or have declined. Mew gulls, which nest along the shoreline, have increased from ?ve to over 30 pairs. Other seabirds, such as common guillemots and black-legged kittiwakes, have shown no clear trends and are probably affected by other factors. Rabbit populations have increased on both islands, reaching an estimated 15,500 animals in 2013 that were causing considerable damage through grazing, erosion, and disturbance of archaeological remains. It is unclear whether the increase in rabbit numbers can be attributed to rat eradication. An intensive control programme has brought the rabbit population under control. While some seabirds have responded positively to the rat eradication, the response of some has been slow and others have not responded, probably as a result of regional pressures on their survival. It is important that monitoring of both seabirds and rabbits continues to track the success of this important seabird colony.
Conservation gains and missed opportunities 15 years after rodent eradications in the Seychelles
Biodiversity Conservation, BRB
Available Online

Accouche, W.

,

Appoo, J.

,

Bristol, R.M.

,

Havemann, C.P.

,

Millett, J.E.

,

Retief, T.A.

,

de Groene, A.

,

van Dinther, M.A.J.A.

,

van de Crommenacker, J.

2019
The Seychelles was one of the ?rst tropical island nations to implement island restoration resulting in biodiversity gain. In the 2000s a series of rat eradication attempts was undertaken in the inner Seychelles islands which had mixed results. Three private islands with tourist resorts successfully eradicated rats: Frégate (2000), Denis Island (2003) and North Island (2005). Frégate Island was successful with the ?rst eradication attempt whereas North and Denis Islands were initially unsuccessful, and both required second eradication operations. All three islands have developed conservation programmes including biosecurity, habitat rehabilitation, and species reintroductions, and have integrated nature into the tourism experience. Conservation actions, including rat and other invasive species eradications, on these three islands resulted in the creation of 560 ha of mammalian predator-free land, the reintroduction of seven populations of ?ve globally threatened birds (GTB) and the safeguarding of two existing GTB populations and several reptile and invertebrate species. However, on these and many other islands in the Seychelles, the potential of this conservation “model”, where island owners implement conservation programmes largely funded by the tourism businesses in collaboration with NGOs (Non-Government Organisations), has not been fully realised. We review the rehabilitation on Frégate, Denis and North Islands from inception to the present, and assess factors that have facilitated the subsequent development of conservation programmes, the presence of receptive businesses and governmental/NGO/donor support and explore limitations on business-led island rehabilitation.
A plan for the eradication of invasive alien species from Arctic islands
BRB
Available Online

Howald, G.

,

Reaser, J.

,

Veatch, S.

2019
Invasive alien species represent one of the most significant threats to Arctic ecosystems and their inhabitants. Rapidly changing environmental conditions and a growing interest in resource extraction, settlement and tourism make the Arctic region particularly vulnerable to biological invasion. For this reason, invasive alien species are of substantial concern to the Arctic Council, a multi-national body comprised of Canada, the Kingdom of Denmark (including Greenland and the Faroe Islands), Finland, Iceland, Norway, Russia, Sweden, and the United States, as well as six international organisations that represent Arctic indigenous peoples as Permanent Participants. The Arctic Council’s Arctic Invasive Alien Species (ARIAS) Strategy and Action Plan includes the priority to: “actively facilitate the eradication of invasive alien species from island ecosystems throughout the Arctic, as well as the recovery of native island species and habitats that have been impacted by invasive alien species.” A multi-national team of governmental and non-government partners is collaborating in the development of an action plan (hereafter ‘islands plan’) for the eradication of invasive alien species from Arctic island ecosystems. The intent of the plan is to provide a vision and strategy for a region-wide approach to the eradication of island invasive alien species as a multi-national commitment. The islands plan will set forth a strategy for prioritising island eradications consistent with the growing pressures on ecological and cultural systems. We have a unique opportunity in the Arctic to take decisive action to prevent and mitigate the adverse impacts of invasive alien species that plague much of the rest of the world. The eradication of invasive alien species from islands in other parts of the world provides useful insights into best practices, including approaches to prioritisation and cost-effectiveness.
Invasive species removals and scale – contrasting island and mainland experience
BRB
Available Online

Adriaens, T.

,

Booy, O.

,

Mill, A.

,

Robertson, P.

,

Roy, S.

,

Shirley, M.

,

Tatayah, V.

,

Ward, A.

2019
Recent years have seen large increases in the number and size of successful invasive species eradications from islands. There is also a long history of large scale removals on larger land-masses. These programmes for mammals and terrestrial plants follow the same cost-area relationship although spanning 10 orders of magnitude in scale. Eradication can be readily defined in island situations but can be more complex on larger land-masses where uncertainties defining the extent of a population, multiple population centres on the same land-mass and ongoing risks of immigration are commonplace. The term ‘complete removal’ is proposed to describe removal from an area with ongoing eff ort to maintain the area as clear, as features in many larger scale mainland programmes. Examples of complete removal to a boundary, in patches and in habitat islands are discussed. While island eradications continue to grow in scale, new legislation such as the lists of Species of European Union Concern will also drive increasing management on larger land-masses. However, these lists include large numbers of species that are already widespread. Methods are needed to prioritise species to reflect both the risks posed and the feasibility of management, including the effects of scale on cost and effectiveness.
Working with the local community to eradicate rats on an inhabited island: securing the seabird heritage of the Isles of Scilly
BRB
Available Online

Bell, E.

,

Buckley, P.

,

Garratt, W.

,

Lock, L.

,

Mason, S.

,

McCarthy, R.

,

Pearce, J.

,

Pearson, J.

,

Pierre, P.

,

Sugar, K.

2019
The inhabited Isles of Scilly, 45 km off the south-western tip of the UK, are home to 13 seabird species including European storm petrel (Hydrobates pelagicus) and Manx shearwater (Puffinus puffinus), for which the UK has a global responsibility. Between 1983 and 2006, the overall seabird population in Scilly declined by c.25%. This decline triggered the establishment of the Isles of Scilly Seabird Recovery Project, a partnership with the aims to reverse seabird decline and engage the local community and visitors in conserving Scilly’s seabird heritage. The eradication of brown rats (Rattus norvegicus) from St Agnes and Gugh represented the result of over a decade of preparatory work, involving raising awareness and gaining 100% support from the community. The two islands are home to 85 people. Therefore additional, and somewhat unusual, preparations were required (including clearing sheds, communicating with school children and taking precautions to ensure the safety of pets) during the ground-based baiting operation. In 2016 St Agnes and Gugh were officially declared ‘rat-free’, meaning worldwide this is one of the largest community-based eradications to have been successful. Biosecurity on inhabited islands is complex, so to ensure the project’s sustainability, eff orts have been community-led. The community has taken ownership of protecting its seabirds, with 100% saying rat removal and the subsequent increase in seabirds has had, or will have, a positive effect on ecotourism, a key source of income for the islands. No less than 68% of the community said their businesses have directly benefited. This project represents a case study for other community-based projects, showcasing how eradications can gain community support and benefit both wildlife and human populations.
Maximising conservation impact by prioritising islands for biosecurity
Available Online

Bambini, L.

,

Dawson, J.

,

Havery, S.

,

John, L.

,

Oppel, S.

,

Radford, E.

,

Varnham, K.

2019
Invasive alien species are one of the primary threats to native biodiversity on islands worldwide, and their expansion continues due to global trade and travel. Preventing the arrival and establishment of highly successful invasive species through rigorous biosecurity is known to be more economic than the removal of these species once they have established. However, many islands around the world lack biosecurity regulations or practical measures and establishing biosecurity will require social and financial investments. Guiding these investments towards islands where native biodiversity is at highest risk from potential invasions is of strategic importance to maximise conservation benefit with limited resources. Here we implement an established prioritisation approach, previously used to identify which islands will have the greatest conservation gains from the eradication of invasive species, to identify which islands would benefit the most from establishing or improving biosecurity. We demonstrate this approach for 318 islands in the Caribbean UK Overseas Territories and Bermuda where we considered all threatened native terrestrial vertebrates that are vulnerable to the most harmful invasive vertebrates (black and brown rats, cats, small Indian mongoose, green iguana). The approach calculates the increase in conservation threat score resulting from anticipated negative effects of potential invaders on native biodiversity, and highlighted Sombrero (Anguilla) and Cayman Brac (Cayman Islands) as important islands where threatened reptile species would likely be eliminated if rats, feral cats or mongoose invaded. Feasibility and cost implications should now be investigated more closely on the highlighted islands. The prioritisation presented here can be expanded to more islands and more invasive/native taxa (herbivores, plants and invertebrates), but requires a classification of the severity of potential impacts between invasive and native species for which currently little information exists. Besides highlighting opportunities for biosecurity, this approach also highlights where knowledge gaps about population sizes of and threats to reptiles with restricted ranges exist.
A little goes a long way when controlling invasive plants for biodiversity conservation
Available Online

Dudley, T.

,

Knapp, D.

,

Knapp, J.

,

Stahlheber, K.

2019
Invasive species, particularly animals, are being eradicated from islands at ever more ambitious scales. In order to protect island biodiversity and the essential ecosystem functions that it provides, however, plant invasions should be given more management attention. While many advances have been made, plant eradication is inherently more difficult than animal eradication due to persistent seed banks, and eradication may not be possible for more extensive populations. While maintenance control has been successful, critics question the sustainability and priority of these efforts, and targets vary widely. Developing consistent and informed targets requires an understanding of how biodiversity varies with invader cover, yet little is known about this topic. Our research suggests that limited control efforts may be highly beneficial. We conducted a meta-analysis of 54 studies to investigate the effects of plant invasions on invertebrate diversity, incorporating invader cover and residence time as potential causal mechanisms. We also contrasted restored plots with otherwise native plots. We found that invertebrate species richness was 31% lower in exotic plots than in native plots, and that there is a threshold at around 70% invader cover after which the negative effects are significant across all studies. Furthermore, these negative effects tended to decrease with time, and invertebrate richness was even greater in restored plots. The implication is that by removing 30% or less of invasive plant cover and restoring natives, we can achieve many of our conservation goals. We argue that by maintaining invasive patches at or below 70% exotic cover at a site in the near term, we can buy time for both the islands’ insect herbivores to adapt to use the invader, and for managers to continue improving plant eradication technologies. By retaining native diversity in this way, we can help to increase the resistance and resilience of these systems to global change and other stressors.