Skip to main content

Search the SPREP Catalogue

Refine Search Results

Related Countries

Tags / Keywords

Language

Available Online

Related Countries

Tags / Keywords

Available Online

20 result(s) found.

Sort by

You searched for

  • Collection BRB
    X
  • Subject Invasive species - Management - Global
    X
  • Subject Invasive species - Management - New Zealand
    X
Global rise in emerging alien species results form increased accessibility of new source pools
Biodiversity Conservation, BRB
Available Online

Alain, Roques

,

Alexander, Mosena

,

Andrew M, Liebhold

,

Barbara, Tokarska-Guzik

,

Benoit, Guenard

,

Bernd, Blasius

,

Bernd, Lenzner

,

Cesar, Capinha

,

Charlotte, E Causton

,

Darren, F Ward

,

David, Pearman

,

Dietmar, Moser

,

Eckehard, G Brockerhoff

,

Ellie, E Dyer

,

Evan, PEconomo

,

Franz, Essl

,

Giuseppe, Brundu

,

Hanno, Seebens

,

Heinke, Jager

,

Helen E, Roy

,

Ingolf, Kuhn

,

Jan, Pergl

,

John, Kartesz

,

Jonathan, M Jeschke

,

Julissa, Rojas-Sandoval

,

Katerina, Stjerova

,

Kevin Walker

,

Laura, Celesti-Grapow

,

Marc, Kenis

,

Margarita, Arianoutsou

,

Mark, van Kleunen

,

Marten, Winter

,

Michael, Ansong

,

Misako, Nishino

,

Nicol, Fuentes

,

Petr, Pysek

,

Philip, E Hulme

,

Piero, Genovesi

,

Riccardo, Scalera

,

Shyama, Pagad

,

Silvia, Rossinelli

,

Stefan, Dullinger

,

Stefan, Schindler

,

Stephanie, Rorke

,

Sven, Bacher

,

Takehiko, Yamanaka

,

Tim M, Blackburn

,

Wayne, Dawson

,

Wolfgang, Nentwig

,

Wolfgang, Rabitsch

Our ability to predict the identity of future invasive alien species is largely based upon knowledge of prior invasion history. Emerging alien species—those never encountered as aliens before—therefore pose a significant challenge to biosecurity interventions worldwide. Understanding their temporal trends, origins, and the drivers of their spread is pivotal to improving prevention and risk assessment tools. Here, we use a database of 45,984 first records of 16,019 established alien species to investigate the temporal dynamics of occurrences of emerging alien species worldwide. Even after many centuries of invasions the rate of emergence of new alien species is still high: One-quarter of first records during 2000–2005 were of species that had not been previously recorded anywhere as alien, though with large variation across taxa. Model results show that the high proportion of emerging alien species cannot be solely explained by increases in well-known drivers such as the amount of imported commodities from historically important source regions. Instead, these dynamics reflect the incorporation of new regions into the pool of potential alien species, likely as a consequence of expanding trade networks and environmental change. This process compensates for the depletion of the historically important source species pool through successive invasions. We estimate that 1–16% of all species on Earth, depending on the taxonomic group, qualify as potential alien species. These results suggest that there remains a high proportion of emerging alien species we have yet to encounter, with future impacts that are difficult to predict.
Estimating burdens of neglected tropical zoonotic diseases on islands with introduced mammals
BRB
Available Online

Croll, Donald A.

,

Holmes, Nick D.

,

Kilpatrick, A. Marm.

,

Newton, Kelly M.

,

Spatz, Dena R.

,

Tershy, Bernie.

,

de Wit, Luz A.

2017
Many neglected tropical zoonotic pathogens are maintained by introduced mammals, and on islands the most common introduced species are rodents, cats, and dogs. Management of introduced mammals, including control or eradication of feral populations, which is frequently done for ecological restoration, could also reduce or eliminate the pathogens these animals carry. Understanding the burden of these zoonotic diseases is crucial for quantifying the potential public health benefits of introduced mammal management. However, epidemiological data are only available from a small subset of islands where these introduced mammals co-occur with people. We examined socioeconomic and climatic variables as predictors for disease burdens of angiostrongyliasis, leptospirosis, toxoplasmosis, toxocariasis, and rabies from 57 islands or island countries. We found strong correlates of disease burden for leptospirosis, Toxoplasma gondii infection, angiostrongyliasis, and toxocariasis with more than 50% of the variance explained, and an average of 57% (range = 32–95%) predictive accuracy on out-of-sample data. We used these relationships to provide estimates of leptospirosis incidence and T. gondii seroprevalence infection on islands where nonnative rodents and cats are present. These predicted estimates of disease burden could be used in an initial assessment of whether the costs of managing introduced mammal reservoirs might be less than the costs of perpetual treatment of these diseases on islands.
Massive yet grossly underestimated global costs of invasive insects
BRB
Available Online

Albert, Celine.

,

Barbet-Massin, Morgane.

,

Bellard, Celine.

,

Bradshaw, Corey J.A.

,

Courchamp, Franck.

,

Fournier, Alice.

,

Leroy, Boris.

,

Roiz, David.

,

Salles, Jean-Michel.

,

Simard, Frederic.

2016
Insects have presented human society with some of its greatest development challenges by spreading diseases, consuming crops and damaging infrastructure. Despite the massive human and financial toll of invasive insects, cost estimates of their impacts remain sporadic, spatially incomplete and of questionable quality. Here we compile a comprehensive database of economic costs of invasive insects. Taking all reported goods and service estimates, invasive insects cost a minimum of US$70.0 billion per year globally, while associated health costs exceed US$6.9 billion per year. Total costs rise as the number of estimate increases, although many of the worst costs have already been estimated (especially those related to human health). A lack of dedicated studies, especially for reproducible goods and service estimates, implies gross underestimation of global costs. Global warming as a consequence of climate change, rising human population densities and intensifying international trade will allow these costly insects to spread into new areas, but substantial savings could be achieved by increasing surveillance, containment and public awareness.
Ecological and socioeconomic impacts of invasive alien species in island ecosystems.
Biodiversity Conservation, BRB
Available Online

Jamie K Reaser ? Laura A Meyerson ? Quentin Cronk ? Maj De Poorter

Minimizing the impact of invasive alien species (IAS) on islands and elsewhere requires researchers to provide cogent information on the environmental and socioeconomic consequences of IAS to the public and policy makers. Unfortunately, this information has not been readily available owing to a paucity of scientific research and the failure of the scientific community to make their findings readily available to decision makers. This review explores the vulnerability of islands to biological invasion, reports on environmental and socioeconomic impacts of IAS on islands and provides guidance and information on technical resources that can help minimize the effects of IAS in island ecosystems. This assessment is intended to provide a holistic perspective on island-IAS dynamics, enable biologists and social scientists to identify information gaps that warrant further research and serve as a primer for policy makers seeking to minimize the impact of IAS on island systems. Case studies have been selected to reflect the most scientifically-reliable information on the impacts of IAS on islands. Sufficient evidence has emerged to conclude that IAS are the most significant drivers of population declines and species extinctions in island ecosystems worldwide. Clearly, IAS can also have significant socioeconomic impacts directly (for example human health) and indirectly through their effects on ecosystem goods and services. These impacts are manifest at all ecological levels and affect the poorest, as well as richest, island nations. The measures needed to prevent and minimize the impacts of IAS on island ecosystems are generally known. However, many island nations and territories lack the scientific and technical information, infrastructure and human and financial resources necessary to adequately address the problems caused by IAS. Because every nation is an exporter and importer of goods and services, every nation is also a facilitator and victim of the invasion of alien species. Wealthy nations therefore need to help raise the capacity of island nations and territories to minimize the spread and impact of IAS.