Skip to main content

Search the SPREP Catalogue

3 result(s) found.

Sort by

You searched for

  • Collection Biodiversity Conservation
    X
Global rise in emerging alien species results form increased accessibility of new source pools
Biodiversity Conservation, BRB
Available Online

Alain, Roques

,

Alexander, Mosena

,

Andrew M, Liebhold

,

Barbara, Tokarska-Guzik

,

Benoit, Guenard

,

Bernd, Blasius

,

Bernd, Lenzner

,

Cesar, Capinha

,

Charlotte, E Causton

,

Darren, F Ward

,

David, Pearman

,

Dietmar, Moser

,

Eckehard, G Brockerhoff

,

Ellie, E Dyer

,

Evan, PEconomo

,

Franz, Essl

,

Giuseppe, Brundu

,

Hanno, Seebens

,

Heinke, Jager

,

Helen E, Roy

,

Ingolf, Kuhn

,

Jan, Pergl

,

John, Kartesz

,

Jonathan, M Jeschke

,

Julissa, Rojas-Sandoval

,

Katerina, Stjerova

,

Kevin Walker

,

Laura, Celesti-Grapow

,

Marc, Kenis

,

Margarita, Arianoutsou

,

Mark, van Kleunen

,

Marten, Winter

,

Michael, Ansong

,

Misako, Nishino

,

Nicol, Fuentes

,

Petr, Pysek

,

Philip, E Hulme

,

Piero, Genovesi

,

Riccardo, Scalera

,

Shyama, Pagad

,

Silvia, Rossinelli

,

Stefan, Dullinger

,

Stefan, Schindler

,

Stephanie, Rorke

,

Sven, Bacher

,

Takehiko, Yamanaka

,

Tim M, Blackburn

,

Wayne, Dawson

,

Wolfgang, Nentwig

,

Wolfgang, Rabitsch

Our ability to predict the identity of future invasive alien species is largely based upon knowledge of prior invasion history. Emerging alien species—those never encountered as aliens before—therefore pose a significant challenge to biosecurity interventions worldwide. Understanding their temporal trends, origins, and the drivers of their spread is pivotal to improving prevention and risk assessment tools. Here, we use a database of 45,984 first records of 16,019 established alien species to investigate the temporal dynamics of occurrences of emerging alien species worldwide. Even after many centuries of invasions the rate of emergence of new alien species is still high: One-quarter of first records during 2000–2005 were of species that had not been previously recorded anywhere as alien, though with large variation across taxa. Model results show that the high proportion of emerging alien species cannot be solely explained by increases in well-known drivers such as the amount of imported commodities from historically important source regions. Instead, these dynamics reflect the incorporation of new regions into the pool of potential alien species, likely as a consequence of expanding trade networks and environmental change. This process compensates for the depletion of the historically important source species pool through successive invasions. We estimate that 1–16% of all species on Earth, depending on the taxonomic group, qualify as potential alien species. These results suggest that there remains a high proportion of emerging alien species we have yet to encounter, with future impacts that are difficult to predict.
Ecological and socioeconomic impacts of invasive alien species in island ecosystems.
Biodiversity Conservation, BRB
Available Online

Jamie K Reaser ? Laura A Meyerson ? Quentin Cronk ? Maj De Poorter

Minimizing the impact of invasive alien species (IAS) on islands and elsewhere requires researchers to provide cogent information on the environmental and socioeconomic consequences of IAS to the public and policy makers. Unfortunately, this information has not been readily available owing to a paucity of scientific research and the failure of the scientific community to make their findings readily available to decision makers. This review explores the vulnerability of islands to biological invasion, reports on environmental and socioeconomic impacts of IAS on islands and provides guidance and information on technical resources that can help minimize the effects of IAS in island ecosystems. This assessment is intended to provide a holistic perspective on island-IAS dynamics, enable biologists and social scientists to identify information gaps that warrant further research and serve as a primer for policy makers seeking to minimize the impact of IAS on island systems. Case studies have been selected to reflect the most scientifically-reliable information on the impacts of IAS on islands. Sufficient evidence has emerged to conclude that IAS are the most significant drivers of population declines and species extinctions in island ecosystems worldwide. Clearly, IAS can also have significant socioeconomic impacts directly (for example human health) and indirectly through their effects on ecosystem goods and services. These impacts are manifest at all ecological levels and affect the poorest, as well as richest, island nations. The measures needed to prevent and minimize the impacts of IAS on island ecosystems are generally known. However, many island nations and territories lack the scientific and technical information, infrastructure and human and financial resources necessary to adequately address the problems caused by IAS. Because every nation is an exporter and importer of goods and services, every nation is also a facilitator and victim of the invasion of alien species. Wealthy nations therefore need to help raise the capacity of island nations and territories to minimize the spread and impact of IAS.