Skip to main content

Search the SPREP Catalogue

Refine Search Results

Related Countries

Language

Available Online

Related Countries

Available Online

10 result(s) found.

Sort by

You searched for

  • Author Griffiths, R.
    X
  • Collection BRB
    X
Successes and failures of rat eradications on tropical islands: a comparative review of eight recent projects
Biodiversity Conservation, BRB
Available Online

Brown, D.

,

Cranwell, S.

,

Cuthbert, R.J.

,

Griffiths, R.

,

Howald, G.

,

Keitt, B.

,

Pitt, W.C.

,

Tershy, B.

,

Wegmann, A.

2019
Rat eradication is a highly effective tool for conserving biodiversity, but one that requires considerable planning eff ort, a high level of precision during implementation and carries no guarantee of success. Overall, rates of success are generally high but lower for tropical islands where most biodiversity is at risk. We completed a qualitative comparative review on four successful and four unsuccessful tropical rat eradication projects to better understand the factors influencing the success of tropical rat eradications and shed light on how the risk of future failures can be minimised. Observations of juvenile rats surviving more than four weeks after bait application on two islands validate the previously considered theoretical risk that unweaned rats can remain isolated from exposure to rodent bait for a period. Juvenile rats emerging after bait was no longer readily available may have been the cause of some or all the project failures. The elevated availability of natural resources (primarily fruiting or seeding plants) generated by rainfall prior to project implementation(documented for three of the unsuccessful projects) may also have contributed to project failure by reducing the likelihood that all rats would consume sufficient rodent bait or compounding other factors such as rodent breeding. Our analysis highlights that rat eradication can be achieved on tropical islands but suggests that events that cannot be predicted with certainty in some tropical regions can act individually or in concert to reduce the likelihood of project success. We recommend research to determine the relative importance of these factors in the fate of future tropical projects and suggest that existing practices be re-evaluated for tropical island rodent eradications.
House mice on islands: management and lessons from New Zealand
Biodiversity Conservation, BRB
Available Online

Birmingham,C.

,

Broome, K.

,

Brown, D.

,

Brown, K.

,

Corson, P.

,

Cox, A.

,

Golding, C.

,

Griffiths, R.

,

Murphy, E.

2019
The impacts of house mice (Mus musculus), one of four invasive rodent species in New Zealand, are only clearly revealed on islands and fenced sanctuaries without rats and other invasive predators which suppress mouse populations, influence their behaviour, and confound their impacts. When the sole invasive mammal on islands, mice can reach high densities and influence ecosystems in similar ways to rats. Eradicating mice from islands is not as difficult as previously thought, if best practice techniques developed and refined in New Zealand are applied in association with diligent planning and implementation. Adopting this best practice approach has resulted in successful eradication of mice from several islands in New Zealand and elsewhere including some of the largest ever targeted for mice; in multi-species eradications; and where mouse populations were still expanding after recent invasion. Prevention of mice reaching rodent-free islands remains an ongoing challenge as they are inveterate stowaways, potentially better swimmers than currently thought, and prolific breeders in predator-free habitat. However, emergent mouse populations can be detected with conventional surveillance tools and eradicated before becoming fully established if decisive action is taken early enough. The invasion and eventual eradication of mice on Maud Island provides a case study to illustrate New Zealand-based lessons around mouse biosecurity and eradication.
Applying lessons learnt from tropical rodent eradications: a second attempt to remove invasive rats from Desecheo National Wildlife Refuge, Puerto Rico
Biodiversity Conservation, BRB
Available Online

Figuerola-Hernandez, C.E.

,

Griffiths, R.

,

Herrera-Giraldo, J.L.

,

Howald, G.R.

,

Keitt, B.

,

Silander, S.

,

Swinnerton, K.

,

Will, D.J.

2019
The introduction of invasive rats, goats, and rhesus macaques to Desecheo National Wildlife Refuge, Puerto Rico led to the extirpation of regionally signifi cant seabird colonies and negatively impacted plant and endemic reptile species. In 2012, following the successful removal of goats and macaques from Desecheo, an attempt to remove black rats using aerially broadcast rodenticide and bait stations was unsuccessful. A review of the operation suggested that the most likely contributors to the failure were: unusually high availability of alternative foods resulting from higher than average rainfall, and insufficient bait availability. In 2016, a second, successful attempt to remove rats was conducted that incorporated best practice guidelines developed during a workshop that focused on addressing the higher failure rate observed when removing rats from tropical islands. Project partners developed a decision-making process to assess the risks to success posed by environmental conditions and established go/no-go decision points leading up to implementation. Observed environmental conditions appeared suitable, and the operation was completed using aerial broadcast of bait in two applications with a target sowing rate of 34 kg/ha separated by 22 days. Application rates achieved on the ground were stratified such that anticipated high risk areas in the cliff s and valleys received additional bait. We consider the following to be key to the success of the second attempt: 1) monitoring environmental conditions prior to the operation, and proceeding only if conditions were conducive to success, 2) reinterpretation of bait availability data using the lower 99% confidence interval to inform application rates and ensure sufficient coverage across the entire island, 3) treating the two applications as independent, 4) increasing the interval between applications, 5) seeking regulatory approval to give the operational team sufficient flexibility to ensure a minimum application rate at every point on the island, and 6) being responsive to operational monitoring and making any necessary adjustments.
Special Issue Article: Tropical rat eradicationNon-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (Rattus rattus) eradication on Palmyra Atoll, tropical Pacific. Biological Conservation. Volume 185, May 2015
Biodiversity Conservation, BRB
Available Online

Berentsen. A.R

,

Eisemann. J.D

,

Howaldd. G .R.

,

Pitt. W.C

,

Shiels. A.B

,

Volker. S.F

,

Wegmann. A.S

2015
The use of rodenticides to control or eradicate invasive rats (Rattus spp.) for conservation purposes has rapidly grown in the past decades, especially on islands. The non-target consequences and the fate of toxicant residue from such rodent eradication operations have not been well explored. In a cooperative effort, we monitored the application of a rodenticide, ‘Brodifacoum 25W: Conservation’, during an attempt to eradicate Rattus rattus from Palmyra Atoll. In 2011, Brodifacoum 25W: Conservation was aerially broadcasted twice over the entire atoll (2.5 km2) at rates of 80 kg/ha and 75 kg/ha and a supplemental hand broadcast application (71.6 kg/ha) occurred three weeks after the second aerial application over a 10 ha area. We documented brodifacoum residues in soil, water, and biota, and documented mortality of non-target organisms. Some bait (14–19% of the target application rate) entered the marine environment to distances 7 m from the shore. After the application commenced, carcasses of 84 animals representing 15 species of birds, fish, reptiles and invertebrates were collected opportunistically as potential non-target mortalities. In addition, fish, reptiles, and invertebrates were systematically collected for residue analysis. Brodifacoum residues were detected in most (84.3%) of the animal samples analyzed. Although detection of residues in samples was anticipated, the extent and concentrations in many parts of the food web were greater than expected. Risk assessments should carefully consider application rates and entire food webs prior to operations using rodenticides.
Special Issue Article: Tropical rat eradication. The next generation of rodent eradications: Innovative technologies and tools to improve species specificity and increase their feasibility on islands. Biological Conservation. Volume 185, May 2015
Biodiversity Conservation, BRB
Available Online

Baxter. G.S.

,

Beek. J

,

Campbell K.J

,

Eason C.T

,

Glen A.S

,

Godwin. J

,

Gould. F

,

Holmes. N.D

,

Howald. G.R

,

Madden F.M

,

Ponder J.B

,

Threadgill. D.W

,

Wegmann. A.S

2015
Rodents remain one of the most widespread and damaging invasive alien species on islands globally. The current toolbox for insular rodent eradications is reliant on the application of sufficient anticoagulant toxicant into every potential rodent territory across an island. Despite significant advances in the use of these toxicants over recent decades, numerous situations remain where eradication is challenging or not yet feasible. These include islands with significant human populations, unreceptive stakeholder communities, co-occurrence of livestock and domestic animals, or vulnerability of native species. Developments in diverse branches of science, particularly the medical, pharmaceutical, invertebrate pest control, social science, technology and defense fields offer potential insights into the next generation of tools to eradicate rodents from islands. Horizon scanning is a structured process whereby current problems are assessed against potential future solutions. We undertook such an exercise to identify the most promising technologies, techniques and approaches that might be applied to rodent eradications from islands. We highlight a Rattus-specific toxicant, RNA interference as species-specific toxicants, rodenticide research, crab deterrent in baits, prophylactic treatment for protection of non-target species, transgenic rodents, virus vectored immunocontraception, drones, self-resetting traps and toxicant applicators, detection probability models and improved stakeholder community engagement methods. We present a brief description of each method, and discuss its application to rodent eradication on islands, knowledge gaps, challenges, whether it is incremental or transformative in nature and provide a potential timeline for availability. We outline how a combination of new tools may render previously intractable rodent eradication problems feasible.
Special Issue Article: Tropical rat eradication. Improving the odds: Assessing bait availability before rodent eradications to aid in selecting bait application rates. Biological Conservation. Volume 185, May 2015
Biodiversity Conservation, BRB
Available Online

Berentsen. A.R

,

Brooke. M.L

,

Cuthbert. R.J

,

Griffiths. R.

,

Holmes. N.D

,

Howald. G.R

,

Pitt. W.C

,

Pott. M

,

Ramos-Rend¢n. G

,

Russell. J.C

,

Samaniego-Herrera. A

,

Wegmann. A.S

2015
Rodent eradications undertaken on tropical islands are more likely to fail than eradications undertaken at higher latitudes. We report on 12 independent rodent eradication projects undertaken on tropical islands that utilized the results of an in situ bait availability study prior to eradication to inform, a priori, the bait application rate selected for the eradication. These projects also monitored bait availability during the eradication. The results from our analysis verified the utility of bait availability studies to future rodent eradication campaigns and confirmed the influence of two environmental factors that can affect bait availability over time: precipitation prior to the study and the abundance of land crabs at the study site. Our findings should encourage eradication teams to conduct in-depth assessments of the targeted island prior to project implementation. However, we acknowledge the limitations of such studies (two of the projects we reviewed failed and one removed only one of two rodent species present) and provide guidance on how to interpret the results from a bait availability study in planning an eradication. Study design was inconsistent among the twelve cases we reviewed which limited our analysis. We recommend a more standardized approach for measuring bait availability prior to eradication to provide more robust predictions of the rate at which bait availability will decrease during the eradication and to facilitate future comparisons among projects and islands.
Special Issue Article: Tropical rat eradicationFactors associated with rodent eradication failure. Biological Conservation. Volume 185, May 2015
Biodiversity Conservation, BRB
Available Online

Alifano. A

,

Griffiths.R

,

Holmes. N.D

,

Pott. M

,

Russell. J.C.

,

Wegmann. A.S

,

Will.D

2015
Invasive rodents have an overwhelmingly detrimental impact to native flora and fauna on islands. Rodent eradications from islands have led to valuable biodiversity conservation outcomes. Tropical islands present an additional suite of challenges for rat eradications due to unique characteristics associated with these environments. To date tropical island rat eradications have failed at a higher rate than those undertaken outside the tropics. Critical knowledge gaps exist in our understanding of what drives this outcome. We collated an in-depth dataset of 216 rodenticide based rat eradication operations (33% of all known rodent eradications) in order to determine correlates of eradication failure, including both project implementation factors and target island ecology, geography and climate. We assessed both failed and successful projects, and projects inside and outside the tropics, using random forests, a statistical approach which compensates for high dimensionality within, and correlation among, predictor variables. When assessing all projects, increasing mean annual temperature, particularly above 24 °C, underscored the higher failure rate and greater difficulty of rodent eradications on islands in lower latitudes. We also found clear trends in eradication failure for factors unique to the tropics, including the presence of land crabs – burrowing and hermit crabs, and coconut palms (Cocos nucifera). The presence of agriculture was also associated with failure. Aerial operations had a higher success rate than ground-based methods but success with this technique was less likely in the presence of hermit crabs and other non-target bait consumers. Factors associated with failure in ground-based eradication methods suggested limitations to project scaling such as island area and number of staff. Bait station operations were less likely to succeed when using stopping rules based on measures of rodent abundance. Factors influencing rat eradication failure in tropical environments continue to require a deeper understanding of tropical island dynamics to achieve a higher rate of eradication success.