Skip to main content

Search the SPREP Catalogue

6 result(s) found.

Sort by

You searched for

  • Author Broome, K.
    X
  • Publication Year 2019
    X
The history of the aerial application of rodenticide in New Zealand
Biodiversity Conservation, BRB
Available Online

Broome, K.

,

Garden, P.

,

McClelland, P.

2019
Following the incursion of rats (Rattus rattus) on Taukihepa (Big South Cape Island; 93.9 km²) off southern New Zealand in 1963, and the subsequent extirpation of several endemic species, the New Zealand Wildlife Service realised that, contrary to general belief at the time, introduced predators do not reach a natural balance with native species and that a safe breeding habitat for an increasing number of ‘at risk’ species was urgently needed. Off shore islands offered the best option for providing predator free habitat but there was a limited number of predator-free islands available and most were very small. Eradicating rodents on larger islands to provide a wider range and greater area of habitats was required and hand treating these larger areas using trapping and hand application of toxicants, the only methods available at the time, proved problematic and often impossible. Helicopters had been used to distribute bait for the control of rabbits and brushtail possums in the past but eradication of any particular predator species was considered ‘not feasible’. The development of a GPS-based aircraft guidance system, a suitable bait product, specialised bait delivery systems and second-generation anti-coagulant toxicants changed that. Now islands as large as South Georgia (3,900 km²) have been treated using this method
House mice on islands: management and lessons from New Zealand
Biodiversity Conservation, BRB
Available Online

Birmingham,C.

,

Broome, K.

,

Brown, D.

,

Brown, K.

,

Corson, P.

,

Cox, A.

,

Golding, C.

,

Griffiths, R.

,

Murphy, E.

2019
The impacts of house mice (Mus musculus), one of four invasive rodent species in New Zealand, are only clearly revealed on islands and fenced sanctuaries without rats and other invasive predators which suppress mouse populations, influence their behaviour, and confound their impacts. When the sole invasive mammal on islands, mice can reach high densities and influence ecosystems in similar ways to rats. Eradicating mice from islands is not as difficult as previously thought, if best practice techniques developed and refined in New Zealand are applied in association with diligent planning and implementation. Adopting this best practice approach has resulted in successful eradication of mice from several islands in New Zealand and elsewhere including some of the largest ever targeted for mice; in multi-species eradications; and where mouse populations were still expanding after recent invasion. Prevention of mice reaching rodent-free islands remains an ongoing challenge as they are inveterate stowaways, potentially better swimmers than currently thought, and prolific breeders in predator-free habitat. However, emergent mouse populations can be detected with conventional surveillance tools and eradicated before becoming fully established if decisive action is taken early enough. The invasion and eventual eradication of mice on Maud Island provides a case study to illustrate New Zealand-based lessons around mouse biosecurity and eradication.
Seasonal variation in movements and survival of invasive Pacific rats on sub-tropical Henderson Island: implications for eradication.
Biodiversity Conservation, BRB
Available Online

Bond, A.L.

,

Churchyard, T.

,

Donaldson, A.

,

Duffield, N.

,

Havery, S.

,

Kelly, J.

,

Lavers, J.L.

,

McClelland, J.T.W.

,

Oppel, S.

,

Proud, T.

,

Russell, J.C.

2019
Invasive rodents are successful colonists of many ecosystems around the world, and can have very flexible foraging behaviours that lead to differences in spatial ranges and seasonal demography among individuals and islands. Understanding such spatial and temporal information is critical to plan rodent eradication operations, and a detailed examination of an island’s rat population can expand our knowledge about possible variation in behaviour and demography of invasive rats in general. Here we investigated the movements and survival of Pacific rats (Rattus exulans) over five months on sub-tropical Henderson Island in the South Pacific Ocean four years after a failed eradication operation. We estimated movement distances, home range sizes and monthly survival using a spatially-explicit Cormack-Jolly-Seber model and examined how movement and survival varied over time. We captured and marked 810 rats and found a median maximum distance between capture locations of 39 ± 25 m (0–107 m) in a coastal coconut grove and 61 ± 127 m (0–1,023 m) on the inland coral plateau. Estimated home range radii of Pacific rats on the coral plateau varied between ‘territorial’ (median: 134 m; 95% credible interval 106–165 m) and ‘roaming’ rats (median: 778 m; 290–1,633 m). The proportion of rats belonging to the ‘roaming’ movement type varied from 1% in early June to 23% in October. There was no evidence to suggest that rats on Henderson in 2015 had home ranges that would limit their ability to encounter bait, making it unlikely that limited movement contributed to the eradication failure if the pattern we found in 2015 is consistent across years. We found a temporal pattern in monthly survival probability, with monthly survival probabilities of 0.352 (0.081–0.737) in late July and 0.950 (0.846–0.987) in late August. If seasonal variation in survival probability is indicative of resource limitations and consistent across years, an eradication operation in late July would likely have the greatest probability of success.
Recovery of introduced Pacific rats following a failed eradication attempt on subtropical Henderson Island, South Pacific Ocean
Biodiversity Conservation, BRB
Available Online

Bond, A.L.

,

Churchyard, T.

,

Cuthbert, R.J.

,

Duffi eld, N.

,

Havery, S.

,

Kelly, J.

,

Lavers, J.L.

,

McClelland, G.T.W.

,

Oppel S.

,

Proud, T.

,

Torr, N.

,

Vickery, J.A.

2019
Rodent eradications in tropical environments are often more challenging and less successful than those in temperate environments. Reduced seasonality and the lack of a defined annual resource pulse influence rodent population dynamics differently than the well-defined annual cycles on temperate islands, so an understanding of rodent ecology and population dynamics is important to maximise the chances of eradication success in the tropics. Here, we report on the recovery of a Pacific rat (Rattus exulans) population on Henderson Island, South Pacific Ocean, following a failed eradication operation in 2011. We assessed changes in the rat population using capture rates from snap-trapping and investigated seasonality by using capture rates from live-trapping. Following the failed eradication operation in 2011, rat populations increased rapidly with annual per capita growth rates, r, of 0.48–5.95, increasing from 60–80 individuals to two-thirds of the pre-eradication abundance within two years, before decreasing (r = -0.25 – -0.20), presumably as the population fluctuated around its carrying capacity. The long-term changes in rat abundance may, however, be confounded by short-term fluctuations: four years after the eradication attempt we observed significant variation in rat trapping rates among months on the plateau, ranging from 36.6 rats per 100 corrected trap-nights in mid-June to 12.6 in late August. Based on mark-recapture, we also estimated rat density fluctuations in the embayment forest between 20.4 and 42.9 rats ha-1 within one month in 2015, and a much lower rat density on the coral plateau fluctuating between 0.76 and 6.08 rats ha-1 in the span of two months. The causes for the short-term density fluctuations are poorly understood, but as eradication operations on tropical and subtropical islands become more frequent, it will be increasingly important to understand the behaviour and ecology of the invasive species targeted to identify times that maximise eradication success.
Feasibility of eradicating the large white butterfly (Pieris brassicae) from New Zealand: data gathering to inform decisions about the feasibility of eradication
Biodiversity Conservation, BRB
Available Online

Broome, K.

,

Brown, K.

,

Green, C.

,

Phillips, C.B.

,

Toft, R.

,

Walker, G.

2019
Pieris brassicae, large white butter?y, was ?rst found in New Zealand in Nelson in May 2010. The Ministry for Primary Industries (MPI) responded with a monitoring programme until November 2012 when the Department of Conservation (DOC) commenced an eradication programme. DOC was highly motivated to eradicate P. brassicae by the risk it posed to New Zealand endemic cress species, some of which are already nearly extinct. DOC eliminated the butter?y from Nelson in less than four years at a cost of ca. NZ$5 million. This is the ?rst time globally that a butter?y has been purposefully eradicated. Variation in estimates of bene?ts, costs, the e?cacy of detection and control tools, and the probability of eradication success all contributed to uncertainty about the feasibility. Cost bene?t analyses can contribute to assessing feasibility but are prone to inaccurate assumptions when data are limited, and other feasibility questions are equally important in considering the best course of action. Uncertainty does not equate to risk and reducing uncertainty through data gathering can inform feasibility and decision making while increasing the probability of eradication success.