Skip to main content

Search the SPREP Catalogue

Refine Search Results

Related Countries

Language

Material Type

Available Online

Related Countries

Material Type

Available Online

8 result(s) found.

Sort by

You searched for

Maximising conservation impact by prioritising islands for biosecurity
Available Online

Bambini, L.

,

Dawson, J.

,

Havery, S.

,

John, L.

,

Oppel, S.

,

Radford, E.

,

Varnham, K.

2019
Invasive alien species are one of the primary threats to native biodiversity on islands worldwide, and their expansion continues due to global trade and travel. Preventing the arrival and establishment of highly successful invasive species through rigorous biosecurity is known to be more economic than the removal of these species once they have established. However, many islands around the world lack biosecurity regulations or practical measures and establishing biosecurity will require social and financial investments. Guiding these investments towards islands where native biodiversity is at highest risk from potential invasions is of strategic importance to maximise conservation benefit with limited resources. Here we implement an established prioritisation approach, previously used to identify which islands will have the greatest conservation gains from the eradication of invasive species, to identify which islands would benefit the most from establishing or improving biosecurity. We demonstrate this approach for 318 islands in the Caribbean UK Overseas Territories and Bermuda where we considered all threatened native terrestrial vertebrates that are vulnerable to the most harmful invasive vertebrates (black and brown rats, cats, small Indian mongoose, green iguana). The approach calculates the increase in conservation threat score resulting from anticipated negative effects of potential invaders on native biodiversity, and highlighted Sombrero (Anguilla) and Cayman Brac (Cayman Islands) as important islands where threatened reptile species would likely be eliminated if rats, feral cats or mongoose invaded. Feasibility and cost implications should now be investigated more closely on the highlighted islands. The prioritisation presented here can be expanded to more islands and more invasive/native taxa (herbivores, plants and invertebrates), but requires a classification of the severity of potential impacts between invasive and native species for which currently little information exists. Besides highlighting opportunities for biosecurity, this approach also highlights where knowledge gaps about population sizes of and threats to reptiles with restricted ranges exist.
Safeguarding Orkney's native wildlife from non-native invasive stoats
Biodiversity Conservation
Available Online

Auld, M.

,

Ayling, B.

,

Bambini, L.

,

Harper, G.

,

Neville, G.

,

Sankey, S.

,

Thompson, D.B.A.

,

Walton, P.

2019
The Orkney Islands, o? the north-east coast of Scotland, support highly significant?cant cultural and natural heritage. The combined land area of the 70 islands is 990 km2 (380 sq mi), 1% of the UK, but they host over 20% of the UK’s breeding hen harriers (Circus cyaneus) (declining over much of its mainland range), 8% of breeding curlews (Numenius arquata) (one of only two UK populations not in decline) and an internationally important assemblage of breeding seabirds. The Orkney Islands are naturally free of mammalian predators, and all bird species, including raptors, are ground-nesting in the largely treeless landscape. Rats (Rattus spp.), hedgehogs (Erinaceus europaeus) and feral cats (Felis catus) are present across the archipelago. Stoats (Mustela erminea) are native to mainland UK but not Orkney, yet were detected on Orkney Mainland in 2010. Orkney Mainland has an area of 523 km2 (202 sq mi). Early attempts at removing them were not successful. By 2013 stoats were present across the Orkney Mainland and connected isles. In 2016, SNH and RSPB formed a partnership to eradicate stoats to protect the native wildlife and designated sites of the Orkney islands, and to secure the wider socio-economic and cultural bene?ts of thriving native wildlife. Di?culties faced in developing the project include predicting the e? ort required to remove stoats at a rate faster than they can reproduce, securing community support and access to private land and, in particular, funding large scale biodiversity restoration projects. A feasibility study determined that stoat eradication would be possible using DOC200 kill traps, and search dogs in later stages of the eradication. There are no legally available poisons that could be used on stoats in the UK. A Biosecurity Plan has been produced for the archipelago, with a current focus on preventing the spread of stoats to the uninvaded isles. The partnership is working to secure funds and community support for what will be the world’s largest stoat eradication attempted to date. We present the ?ndings of the feasibility study and our proposed methodology.
Scaling down (cliffs) to meet the challenge: the Shiants’ black rat eradication
Biodiversity Conservation, BRB
Available Online

Bambini, L.

,

Bell, E.

,

Campbell, G.

,

Churchyard, T.

,

Douse, A.

,

Floyd, K.

,

Ibbotson, J.

,

Main, C.E.

,

Nicolson, T.

,

Reid, R.

,

Taylor, P.R.

,

Tayton, J.

,

Varnham, K.

,

Whittington, W.

2019
A successful ground-based eradication of black rats (Rattus rattus) was undertaken on the remote, uninhabited Shiant Isles of north-west Scotland over winter (14 October–28 March) 2015–16. The rat eradication was carried out as part of the Shiants Seabird Recovery Project, which aims to secure long-term breeding habitat for protected seabirds and to attract European storm petrels and Manx shearwaters to nest on the Shiants. Throughout the eradication operation, teams were stationed on two of the three main Shiant islands (Eilean an Tighe, Eilean Mhuire), with access to the third (Garbh Eilean) via a boulder causeway from Eilean an Tighe. Bait (Contrac® blocks containing the anticoagulant bromadiolone 0.005% w/w), was deployed in a grid of 1,183 bait stations covering all areas of the islands and sea stacks. Bait stations were set 50 m apart, with intervals reduced to 25 m in coastal areas of predicted high rat density. Difficult areas were accessed by boat and cliff s of ~120 m in height were accessed by abseiling down ropes made safe using either bolted anchors or ground stakes. The team of staff and volunteers worked through difficult conditions, deploying bait and monitoring intensively for any surviving rats using a combination of tools. The islands were declared rat free in March 2018. This ambitious and challenging project has greatly enhanced UK capacity in rodent eradications for the purposes of conservation.
Impact of anthropogenic disturbances on a diverse riverine fish assemblage in Fiji predicted by functional traits
Available Online

Brown, Christopher J.

,

Jenkins, Aaron P.

,

Jupiter, Stacy D.

,

Lin, Hsien-Yung

2017
1. Anthropogenic disturbances particularly affect biodiversity in sensitive freshwater ecosystems by causing species loss. Thus, measuring the response of species to multiple disturbances is a key issue for conservation and environmental management. 2. As it is not practical to assess the response of every species in a community, we compared the performance of trait and taxonomic-based groupings of species for their abilities to predict species loss in a threatened freshwater fish assemblage. Specifically, we examined responses of a Fijian freshwater fish assemblage to deforestation, placement of anthropogenic barriers (overhanging culverts) and the presence of introduced cichlids. 3. Species grouped by traits showed more consistent responses to disturbances than taxonomic groups. In particular, species belonging to trait groups that were estuary associated favoured medium-to-hard substrate, while feeding specialists were highly likely to be absent in catchments with high deforestation and overhanging culverts. The presence of introduced cichlids (Oreochromis mossambicus and O. niloticus) had a smaller effect than deforestation and barriers, but was negatively associated with species richness of diadromous species with climbing ability and positively associated with presences of some piscivores. The trait groups also revealed that detritivores, species favouring soft substrate, and those with a broad dietary range were less sensitive to anthropogenic disturbances. 4. Our study indicates that using traits to predict species loss from disturbed environments can aid in detecting the responses of rare species to disturbance. In addition, we provided a method to estimate the consistency of species’ responses to disturbance. This study may ultimately help managers identify the most effective actions for conserving sensitive species that are seldom recorded in surveys.
Habitat change mediates the response of coral fish populations to terrestrial run-off
Available Online

Albert, Simon

,

Brown, Christopher J.

,

Jupiter, Stacy D.

,

Klein, Carissa

,

Lin, Hsien-Yung

,

Maina, Joseph M.

,

Mumby, Peter J.

,

Tullock, Vivitskaia J. D.

,

Wenger, Amelia S.

2017
ABSTRACT: Coastal fish populations are typically threatened by multiple human activities, including fishing pressure and run-off of terrestrial pollution. Linking multiple threats to their impacts on fish populations is challenging because the threats may influence a species directly, or indirectly, via its habitats and its interactions with other species. Here we examine spatial variation in abundance of coral reef fish across gradients of fishing pressure and turbidity in Fiji. We explicitly account for multiple pathways of influence to test the alternative hypotheses that (1) habitat moderates predation by providing shelter, so habitat loss only affects prey fish populations if there are abundant predators, (2) habitat change co-drives biomass of both prey and predator functional groups. We examined responses of 7 fish functional groups and found that habitat change co-drives both predator and prey responses to turbidity. Abundances of all functional groups were associated with changes in habitat cover; however, the responses of their habitats to turbidity were mixed. Planktivore and piscivore abundance were lower in areas of high turbidity, because cover of their preferred habitats was lower. Invertivore, browser and grazer abundance did not change strongly over the turbidity gradient, because different components of their habitats exhibited both increases and decreases with turbidity. The effects of turbidity on fish populations were minor in areas where fish populations were already depleted by fishing. These findings suggest that terrestrial run-off modifies the composition of reef fish communities indirectly by affecting the benthic habitats that reef fish use.