Skip to main content

Search the SPREP Catalogue

5 result(s) found.

Sort by

You searched for

  • Collection Biodiversity Conservation
    X
Rat and lagomorph eradication on two large islands of central Mediterranean: differences in island morphology and consequences on methods, problems and targets
Biodiversity Conservation, BRB
Available Online

Baccetti, N.

,

Capizzi, D.

,

Cencetti, T.

,

De Pietro, F.

,

Giannini, F.

,

Gotti, C.

,

Puppo, F.

,

Quilghini, E.

,

Raganella Pelliccion, E.

,

Sammuri, G.

,

Sposimo, P.

,

Trocchi, V.

,

Vagniluca, S.

,

Zanichelli, F.

2019
Montecristo and Pianosa islands, although approximately equal in surface area (c. 1,000 ha), di?er greatly in substrate, human presence, vegetation and altitude (650 m vs. 30 m asl, respectively). The former island hosts one of the largest yelkouan shearwater (Pu?nus yelkouan) populations in Italy, the latter a depleted remnant of once numerous Scopoli’s shearwaters (Calonectris diomedea). Two consecutive EU-funded LIFE projects have been designed to protect these seabird populations. On Montecristo, rough and inaccessible, aerial delivery of toxic baits in January-February 2012 eradicated black rats (Rattus rattus) and feral rabbits (Oryctolagus cuniculus) (originally a non-target species), with no permanent consequences on a local, ancient population of wild goats (Capra hircus). Eradication on Pianosa, currently underway (started January 2017), is being performed by ground baiting, delivered by 4,750 dispensers placed on a 50 m × 50 m grid throughout the island. The latter operation is included in a multi-species eradication aimed at several other target species, among which was the brown hare (Lepus europaeus), apparently introduced around 1840. Genetic analyses on the ?rst trapped hares showed that this was the last uncontaminated and viable population of L. europaeus subsp. meridiei in existence. Whether of natural origin or introduced, the commencement of eradication of this population has instead created the awareness of a taxon otherwise unavailable for conservation elsewhere. While both projects address the same conservation issues (protection of shearwater colonies and restoration of natural communities), they di?er greatly regarding economic cost, public perception, e? ort needed to maintain results in the long term and e?ects on non-target species. In the present paper, speci?c attention has been paid to the comparison between bait delivering techniques, results obtained, the array of problems originating from the complex regulatory framework and reactions by the general public.
Successes and failures of rat eradications on tropical islands: a comparative review of eight recent projects
Biodiversity Conservation, BRB
Available Online

Brown, D.

,

Cranwell, S.

,

Cuthbert, R.J.

,

Griffiths, R.

,

Howald, G.

,

Keitt, B.

,

Pitt, W.C.

,

Tershy, B.

,

Wegmann, A.

2019
Rat eradication is a highly effective tool for conserving biodiversity, but one that requires considerable planning eff ort, a high level of precision during implementation and carries no guarantee of success. Overall, rates of success are generally high but lower for tropical islands where most biodiversity is at risk. We completed a qualitative comparative review on four successful and four unsuccessful tropical rat eradication projects to better understand the factors influencing the success of tropical rat eradications and shed light on how the risk of future failures can be minimised. Observations of juvenile rats surviving more than four weeks after bait application on two islands validate the previously considered theoretical risk that unweaned rats can remain isolated from exposure to rodent bait for a period. Juvenile rats emerging after bait was no longer readily available may have been the cause of some or all the project failures. The elevated availability of natural resources (primarily fruiting or seeding plants) generated by rainfall prior to project implementation(documented for three of the unsuccessful projects) may also have contributed to project failure by reducing the likelihood that all rats would consume sufficient rodent bait or compounding other factors such as rodent breeding. Our analysis highlights that rat eradication can be achieved on tropical islands but suggests that events that cannot be predicted with certainty in some tropical regions can act individually or in concert to reduce the likelihood of project success. We recommend research to determine the relative importance of these factors in the fate of future tropical projects and suggest that existing practices be re-evaluated for tropical island rodent eradications.
Considerations and consequences when conducting aerial broadcast applications during rodent eradications
Biodiversity Conservation, BRB
Available Online

Gill, C.

,

Griffi ths, R.

,

Holmes, N.

,

Howald, G.

,

Will, D.

2019
Aerial broadcast application is currently one of the most common methods for conducting rodent eradications on islands, particularly islands greater than 100 ha or with complex and difficult topography where access by ground teams is difficult. Overall, aerial broadcast applications have a high success rate, but can be burdened by logistical, regulatory, and environmental challenges. This is particularly true for islands where complex shorelines, sheer terrain, and the interface with the marine environment pose additional risks and concerns. Using data collected during ten eradication projects we investigate the influence that operational realities have on broadcast applications. We tested the association between the amount of bait used and island size, topography, and the desire to reduce bait application into the marine environment and then compared planned bait application to actual bait application quantities. Based on our results, islands of decreasing size and increasing coastal complexity tended to use more bait than anticipated and experienced greater variability in localised bait densities. During operations, we recommend analysing flight data to identify treated areas with localised bait densities that fall below the target application rate. We recommend that areas with low localised bait densities may result in biologically significant gaps that should receive an additional application of bait based on project risk variables such as target home range size, non-target bait competitors, and alternative foods. We also recommend a common language for discussing aerial broadcast applications and where future work can be done to improve operational decision making.
Black rat eradication on Italian islands: planning forward by looking backward
Biodiversity Conservation, BRB
Available Online

Baccetti, N.

,

Capizzi, D.

,

Gotti, C.

,

Pelliccioni, E. Raganella

,

Petrassi, F.

,

Sozio, G.

,

Sposimo, P.

2019
Since 1999, the black rat (Rattus rattus) has been eradicated from 14 Italian islands, and eradication is ongoing on a further five islands. Most projects were funded by the European Union (EU) Life Programme. Over the years, eradication techniques have been improved and adapted to different situations, including aerial bait distribution on islands with large inaccessible areas, which otherwise would have relied on a manual bait distribution. A priority list of eradications on islands, which was compiled ten years ago, has been met to a large extent, as rats have been successfully eradicated from many islands of great importance to breeding seabirds. Despite some cases of re-invasion occurring in early projects, advances in biosecurity measures have allowed for eradications on islands where this was previously considered unfeasible due to a high risk of re-invasion. This paper reports on black rat eradication work performed on Italian Mediterranean islands with small villages. We show biodiversity benefits of these programmes, but also qualitatively address socio-economic and health impacts on local communities. Eradication projects have faced new obstacles, due to recent changes in legislation which complicated the application of rodenticides and made it very difficult to get permission for aerial distribution of bait on some of the priority islands.
Control of house mice preying on adult albatrosses at Midway Atoll National Wildlife Refuge
Biodiversity Conservation, BRB
Available Online

Duhr,M.

,

Flanders, B.

,

Flint, E.N.

,

Howald, G.

,

Hunter, S.A.

,

Norwood, D.

,

Taylor, R.V.

2019
Sand Island, Midway Atoll National Wildlife Refuge (MANWR), is home to 21% of all nesting black-footed albatross (Phoebastria nigripes) and 47% of all nesting Laysan albatross (P. immutabilis) worldwide. During the 2015–2016 nesting season predation and disturbance by non-native house mice (Mus musculus), here documented for the first time, resulted in 70 abandoned nests, 42 adult birds killed and 480 wounded. In the following nesting season the affected area increased, resulting in 242 dead adults, 1,218 injured birds and 994 abandoned nests. Mouse predation activities triggered a mouse control response to reduce mouse densities in the affected areas using multi-catch live traps, kill traps, and limited use of anticoagulant rodenticides in bait stations. In 2016–2017 we applied a pelleted cholecalciferol rodenticide, AGRID (Bell Laboratories, Madison, WI), at a rate of 20 kg/ha in all affected areas. The purpose of this study was to evaluate the efficacy of using AGRID to reduce mouse density and rate of mouse attacks on nesting albatrosses on Sand Island. Mouse attacks decreased and mouse abundance was reduced following rodenticide applications in the plots treated in December but changes in attack rates in the plots treated in January were not detectable and mouse abundance increased subsequent to treatment. The plots in the December treatments were much larger than those used in January and rainfall rate increased after December. A minimum size of treatment area may be necessary to achieve a reduction in injury rates in albatrosses. No deleterious effects were observed in non-target organisms. The casualties resulting from mouse predation (mostly Laysan albatross) represent a small proportion of the 360,000 pairs nesting on Sand Island. However, the risk to adult breeding albatrosses representing such a large fraction of the global population prompted the United States Fish & Wildlife Service to prioritise mouse control efforts.