Skip to main content

Search the SPREP Catalogue

6 result(s) found.

Sort by

You searched for

  • Author Green, C.
    X
  • Publication Year 2019
    X
Costs and bene? ts for biodiversity following rat and cat eradication on Te Hauturu-o-Toi/Little Barrier Island
Biodiversity Conservation, BRB
Available Online

Bell, E.

,

Campbell, J.

,

Cassey, P.

,

Ewen, J.G.

,

Green, C.

,

Gri?ths, R.

,

Joyce, L.

,

Rayner, M.

,

Towns, D.

,

Toy, R.

,

Veitch, C.R.

,

Wade, L.

,

Walle, R.

2019
Considerable bene?ts can be achieved for indigenous biodiversity when invasive vertebrates are removed from islands. In New Zealand, two logistically challenging eradications were undertaken, one to remove cats (Felis catus) and the other Paci?c rats (Rattus exulans) from Te Hauturu-o-Toi/Little Barrier Island (Hauturu). Here we document the short- and long-term impacts of these interventions on the biodiversity of Hauturu. We also assess the extent to which predicted outcomes were re?ected in the measured responses for a wide range of species. Short-term impacts of the eradication program encompassed individual mortality for some native species but no measurable impact to populations. In contrast, at least 11 native vertebrates and one native invertebrate species increased in abundance after rat and cat removal. Fifteen of 34 plant species monitored had signi?cantly more seedlings on Hauturu after rat eradication compared with control islands, indicating future changes in forest composition. Several native species previously not recorded on the island were discovered, including the New Zealand storm petrel (Fregetta maoriana) (formerly considered extinct), the forest ringlet butter?y (Dodonidia helmsi) and eight species of aquatic invertebrate. The chevron skink (Oligosoma homalonotum) has been found in increasing numbers and tuatara (Sphenodon punctatus), raised in captivity on the island, are now re-established and breeding in the wild. These results illustrate an island gradually recovering after a long period of modi?cation. We conclude that more success stories such as Hauturu must be told if we are to allay the public’s concerns about such eradication campaigns. And more public support is required if the conservation community is to tackle invasive species at a scale commensurate with the threats they pose.
Rat and lagomorph eradication on two large islands of central Mediterranean: differences in island morphology and consequences on methods, problems and targets
Biodiversity Conservation, BRB
Available Online

Baccetti, N.

,

Capizzi, D.

,

Cencetti, T.

,

De Pietro, F.

,

Giannini, F.

,

Gotti, C.

,

Puppo, F.

,

Quilghini, E.

,

Raganella Pelliccion, E.

,

Sammuri, G.

,

Sposimo, P.

,

Trocchi, V.

,

Vagniluca, S.

,

Zanichelli, F.

2019
Montecristo and Pianosa islands, although approximately equal in surface area (c. 1,000 ha), di?er greatly in substrate, human presence, vegetation and altitude (650 m vs. 30 m asl, respectively). The former island hosts one of the largest yelkouan shearwater (Pu?nus yelkouan) populations in Italy, the latter a depleted remnant of once numerous Scopoli’s shearwaters (Calonectris diomedea). Two consecutive EU-funded LIFE projects have been designed to protect these seabird populations. On Montecristo, rough and inaccessible, aerial delivery of toxic baits in January-February 2012 eradicated black rats (Rattus rattus) and feral rabbits (Oryctolagus cuniculus) (originally a non-target species), with no permanent consequences on a local, ancient population of wild goats (Capra hircus). Eradication on Pianosa, currently underway (started January 2017), is being performed by ground baiting, delivered by 4,750 dispensers placed on a 50 m × 50 m grid throughout the island. The latter operation is included in a multi-species eradication aimed at several other target species, among which was the brown hare (Lepus europaeus), apparently introduced around 1840. Genetic analyses on the ?rst trapped hares showed that this was the last uncontaminated and viable population of L. europaeus subsp. meridiei in existence. Whether of natural origin or introduced, the commencement of eradication of this population has instead created the awareness of a taxon otherwise unavailable for conservation elsewhere. While both projects address the same conservation issues (protection of shearwater colonies and restoration of natural communities), they di?er greatly regarding economic cost, public perception, e? ort needed to maintain results in the long term and e?ects on non-target species. In the present paper, speci?c attention has been paid to the comparison between bait delivering techniques, results obtained, the array of problems originating from the complex regulatory framework and reactions by the general public.
Black rat eradication on Italian islands: planning forward by looking backward
Biodiversity Conservation, BRB
Available Online

Baccetti, N.

,

Capizzi, D.

,

Gotti, C.

,

Pelliccioni, E. Raganella

,

Petrassi, F.

,

Sozio, G.

,

Sposimo, P.

2019
Since 1999, the black rat (Rattus rattus) has been eradicated from 14 Italian islands, and eradication is ongoing on a further five islands. Most projects were funded by the European Union (EU) Life Programme. Over the years, eradication techniques have been improved and adapted to different situations, including aerial bait distribution on islands with large inaccessible areas, which otherwise would have relied on a manual bait distribution. A priority list of eradications on islands, which was compiled ten years ago, has been met to a large extent, as rats have been successfully eradicated from many islands of great importance to breeding seabirds. Despite some cases of re-invasion occurring in early projects, advances in biosecurity measures have allowed for eradications on islands where this was previously considered unfeasible due to a high risk of re-invasion. This paper reports on black rat eradication work performed on Italian Mediterranean islands with small villages. We show biodiversity benefits of these programmes, but also qualitatively address socio-economic and health impacts on local communities. Eradication projects have faced new obstacles, due to recent changes in legislation which complicated the application of rodenticides and made it very difficult to get permission for aerial distribution of bait on some of the priority islands.
Feasibility of eradicating the large white butterfly (Pieris brassicae) from New Zealand: data gathering to inform decisions about the feasibility of eradication
Biodiversity Conservation, BRB
Available Online

Broome, K.

,

Brown, K.

,

Green, C.

,

Phillips, C.B.

,

Toft, R.

,

Walker, G.

2019
Pieris brassicae, large white butter?y, was ?rst found in New Zealand in Nelson in May 2010. The Ministry for Primary Industries (MPI) responded with a monitoring programme until November 2012 when the Department of Conservation (DOC) commenced an eradication programme. DOC was highly motivated to eradicate P. brassicae by the risk it posed to New Zealand endemic cress species, some of which are already nearly extinct. DOC eliminated the butter?y from Nelson in less than four years at a cost of ca. NZ$5 million. This is the ?rst time globally that a butter?y has been purposefully eradicated. Variation in estimates of bene?ts, costs, the e?cacy of detection and control tools, and the probability of eradication success all contributed to uncertainty about the feasibility. Cost bene?t analyses can contribute to assessing feasibility but are prone to inaccurate assumptions when data are limited, and other feasibility questions are equally important in considering the best course of action. Uncertainty does not equate to risk and reducing uncertainty through data gathering can inform feasibility and decision making while increasing the probability of eradication success.
Effort required to confirm eradication of an Argentine ant invasion: Tiritiri Matangi Island, New Zealand
Biodiversity Conservation, BRB
Available Online

Green, C.

2019
Tiritiri Matangi Island in the Hauraki Gulf, Auckland, New Zealand is a 220 ha restoration island managed by the Department of Conservation as an open sanctuary. Following eradication of the only mammalian predator, the Paci?c rat (Rattus exulans) in 1993, a variety of threatened birds, lizards and a giant invertebrate have been transferred to the island. In March 2000, Argentine ant (Linepithema humile) (Hymenoptera: Formicidae) was discovered and delimiting surveys revealed a 10 ha infestation. Managers were concerned that the ant could have signi?cant negative impacts on invertebrates, birds and lizards. Early surveys con?rmed a dramatic decline in all other ant species within the infested area. In February 2001, an eradication programme commenced with paste baits (a.i. 0.01% ? pronil) spread manually in a 2 m × 3 m grid over the entire area. The second year employed a 1 m × 3 m spacing. A second incursion part way through the programme extended the area to 11 ha. The same toxic bait was used throughout the programme to kill residual colonies and a non-toxic version was used as a lure to intensively monitor progress. Eradication was declared in 2016. Critical parts of the programme included detection of post treatment survivors and the level of e?ort required to con?rm successful eradication. New treatment techniques were developed to kill the last small nests by placing toxic baits inside vials on the ground to prolong bait life. Such nests exhibited non-invasive behaviour, short foraging distances, and were prone to disturbance leading to foraging cessation. Bait densities and ?eld placement were critical to success. Sites with residual nests were deemed free of Argentine ant once there had been no detections over three consecutive years of ongoing monitoring. With few successful Argentine ant eradications in the world the techniques used here can inform and improve success rates for other ant eradication attempts.