
Meijer et al., Sci. Adv. 2021; 7 : eaaz5803     30 April 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 13

E N V I R O N M E N T A L  S T U D I E S

More than 1000 rivers account for 80% of global 
riverine plastic emissions into the ocean
Lourens J. J. Meijer1*, Tim van Emmerik1,2, Ruud van der Ent3,4,  
Christian Schmidt5,6, Laurent Lebreton1,7

Plastic waste increasingly accumulates in the marine environment, but data on the distribution and quantification 
of riverine sources required for development of effective mitigation are limited. Our model approach includes geo-
graphically distributed data on plastic waste, land use, wind, precipitation, and rivers and calculates the probabil-
ity for plastic waste to reach a river and subsequently the ocean. This probabilistic approach highlights regions 
that are likely to emit plastic into the ocean. We calibrated our model using recent field observations and show 
that emissions are distributed over more rivers than previously thought by up to two orders of magnitude. We 
estimate that more than 1000 rivers account for 80% of global annual emissions, which range between 0.8 million 
and 2.7 million metric tons per year, with small urban rivers among the most polluting. These high-resolution 
data allow for the focused development of mitigation strategies and technologies to reduce riverine plas-
tic emissions.

INTRODUCTION
Plastic pollution in oceans and rivers is an emerging environmental 
hazard (1), and accumulation on riverbanks, deltas, coastlines (2), 
and the ocean surface (3) is rapidly increasing. Of all the plastics 
ever made to date, it was estimated that 60% has been discarded in 
landfills or in the natural environment (4). Plastic pollution poses 
threats on aquatic life, ecosystems, and human health (5, 6). Plastic 
litter also causes severe economic losses through damage to vessels 
and fishing gear, negative effects on the tourism industry, and in-
creased shoreline cleaning efforts, adding up to US$1.26 billion per 
year for the Asian-Pacific Rim alone (7). Work on the origin and fate 
of plastic pollution in aquatic environments suggests that land-based 
plastics are one of the main sources of marine plastic pollution (8), 
either by direct emission from coastal zones (9) or by transport through 
rivers (10, 11). Riverine plastic transport remains understudied, es-
pecially in areas that are expected to contribute most to global plastic 
emissions into the ocean (12). A better understanding of pathways 
and transport mechanisms of plastic waste to and within rivers and 
the global distribution of riverine plastic emissions into the ocean is a 
prerequisite to developing effective prevention and collection strategies.

Previous attempts to estimate the distribution of global riverine 
emissions of plastic into the ocean (10, 11) relied on empirical indi-
cators representative of waste generation inside a river basin. These 
assessments demonstrated a significant correlation between (micro)
plastic concentration data collected by surface trawls in rivers, na-
tional statistics on mismanaged plastic waste (MPW) generation, and 
population density. For both studies, an empirical formulation was 
presented on the basis of this correlation, which was extrapolated to 

other rivers where data were not available. This resulted in predicted 
plastic (micro- and macroplastics combined) emissions of 1.15 million 
to 2.41 million metric tons (MT) per year (10) and 0.41 million to 
4 million MT year–1 (11). These studies did not account for spatial dis-
tribution of plastic waste generation or climatological or geographical 
differences within river basins. According to these studies, the 10 largest 
emitting rivers contribute 50 to 61% and 88 to 94% to the total river 
emissions. Both models agreed on a disproportional contribution 
of Asian rivers to global plastic emissions. While these modeling ef-
forts have provided a first approximation of the magnitude and spatial 
distribution of global riverine plastic emissions, they emphasized the 
scarcity of data on macroplastic contamination in freshwater ecosystems. 
Available measurements used for calibration of emission predictions 
were not always collected directly at the river mouths, and studies 
reported data on plastic contamination using varying units and 
methods, including surface trawling from boats or bridges (13–15).

Sampling methods using surface net trawls for freshwater plastic 
contamination may be well suited for monitoring microplastic con-
centrations (size, <0.5 cm). However, insufficient sampled volumes 
limited by net opening width or pump outlet dimensions may result 
in the underestimation of macroplastics (several centimeters in size) 
(16) that account for most of the mass of plastic emissions (17). In-
stead, visual observations from bridges provide more consistent re-
sults for the quantification of floating macroplastic in rivers (18). In 
recent years, results from long-term visual counting campaigns for 
the quantification of floating macroplastic emissions from rivers of 
different continents have been made available (19). At a global scale, 
these studies provided observational evidence for the disproportional 
contribution of Asian rivers in plastic emissions predicted by numerical 
models (20–24). Nevertheless, at a local scale, the studies reported 
discrepancies between observations and theoretical formulation (23), 
emphasizing the limitation of current models and the need for a 
revised formulation accounting for basin-scale geography, land use, 
and climate to more accurately estimate floating macroplastic emissions.

Here, we present a revised estimate of global riverine macroplastic 
emissions into the ocean using the most recent field observations 
on macroplastics and a newly developed, distributed probabilistic 
model to more accurately represent driving mechanisms of plastic 
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transport (e.g., wind, runoff, and river discharge), differentiating be-
tween areas with different land use and terrain slope, and including 
plastic retention on land and within rivers. Microplastic transport is 
not included in this study. We derived probabilities for plastic waste 
to be transported from land to river and from river to sea from six 
different geographical indicators and generated a high-resolution 
(3 × 3–arc sec cells) global map of the probability for waste discarded 
on land to reach the ocean within a given year. This information 
combined with the most recent estimates of MPW generation on land 
(25) allowed us to estimate the annual emissions of plastic from rivers 
into the ocean. We calibrated and validated our model against 
136 recent field observation data points (n = 52 for calibration and 
n = 84 for validation) of monthly riverine macroplastic transport 
from more than 67 rivers in 14 countries. We show how the consid-
eration of transport probability for plastic within a river basin can 
highly increase or decrease the estimated emissions of the corre-
sponding river into the ocean. At a global scale, this results in a con-
siderably wider distribution of source points with large rivers 
contributing less to the total than expected, while urban rivers in 
South East Asia and West Africa are identified as the main hot spots 
for plastic emissions. We classified macroplastic-emitting rivers ac-
cording to size, providing insight into which river class contains the 
highest number of rivers and the largest accumulative emissions. 
The classification and distribution of emission points provide a ba-
sis for development of mitigation strategies and technologies as well 
as a road map for upscaling existing mitigation technologies.

RESULTS
Study design
In this study, we calculate the probability for MPW generated inside 
a river basin to leak into aquatic environments. When combined 
with spatial data on MPW generation (25), our framework (Fig. 1) 

allows for the prediction of riverine plastic mass emissions ME into 
the ocean. Probabilities are derived from physical and environmental 
characteristics including precipitation, wind, terrain slope, land use, 
distance to river, river discharge, and distance to the ocean. Precip-
itation and wind are included as mobilizing forces and differentiate 
between climate zones, while terrain slope and land use are included 
to reflect the probability to reach a river and account for differences 
in landscapes from which MPW is generated. Distance to river and 
distance to ocean include the geographical location of MPW gener-
ation in relation to the nearest river and ocean. The probability of 
MPW to reach the nearest river depends on the landscape and the 
distance between the location of generation and the river. We con-
ducted an expert elicitation to constrain model parameters and explored 
the impact of parameters with sensitivity analyses. We calibrated 
and validated our model against 136 field measurements of month-
ly emissions of floating macroplastics from 67 different rivers, col-
lected between 2017 and 2020. A Monte Carlo and one-at-a-time 
(OAT) sensitivity analyses were performed, showing correlations of 
individual parameters with model output and field observations. On 
the basis of the ratio of residuals between 125 observed and mod-
eled locations, a confidence interval was constructed. Model pre-
dicted emission points could range within a factor of 4 with a 68% 
confidence interval and a factor of 10 with a 95% confidence interval.

Comparison with observations
A dataset of monthly averaged plastic transport near the river mouth 
was constructed from literature case studies and observational re-
ports. This dataset was divided into a dataset used for calibration 
and one for validation (tables S1 and S2, respectively). Data that 
were collected and published before March 2019 were used for the 
calibration. Data published or made available to us after March 2019 
were used for the validation. These studies use standardized 
methods to observe and quantify macroplastic transport according 

Fig. 1. Model framework. Plastic emission in a river mouth ME is computed by accumulating of MPW multiplied with the probability of waste leaking into the ocean, P(E) 
within a river basin. P(E) is constructed with P(M), P(R), and P(O), which contain physical processes accountable for MPW transport.
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or comparable to published approaches (18, 26); see table S3 for 
details on observational and model-predicted riverine plastic emis-
sions per month or per year.

Calibrated model results were compared with field observations, 
and a good order-of-magnitude relationship was demonstrated (co-
efficient of determination, r2 = 0.71, n = 51). All model predictions 
are within one order of magnitude from observations (the Pasig River 
is on the border of one order of magnitude) (Fig. 2 and fig. S1), ex-
cept for the Kuantan River. The Kuantan River is considered an 
outlier, with observed concentrations an order of magnitude lower 
than estimated by the model; when the Kuantan River is included in 
the model, the coefficient of determination r2 is 0.61 (table S4).

We validated (Fig. 2 and fig. S2) our model against 84 indepen-
dent data points collected from literature on macroplastic observa-
tions or macroplastic correlated to microplastic observations. These 
data points originate from 51 rivers in six countries. We consider 
the Besos River (10 data points) an outlier because there are four 
weirs, which may act as a sink for plastics (27) directly upstream 
from the observation point (28). The remaining 74 validation data 
points are within one order of magnitude from the observed values, 

and our model predictions demonstrated a better correlation than 
during the calibration exercise (coefficient of determination, r2 = 0.74, 
n = 74). A separate validation graph (fig. S3) shows the results where 
39 Japanese prefectures are merged into one single data point. This 
illustrates that the validation results are not biased by the inclusion 
of many points from one single country (r2 = 0.84).

Global distribution of riverine plastic emissions
Of the total 100,887 outlets of rivers and streams included in our 
model, we found that 31,904 locations emit plastic waste into the 
ocean, leaking in 1.0 (0.8 to 2.7) million MT into the marine envi-
ronment in 2015. Rivers are included in the model if the annual 
average discharge is more than 0.1 m3 s−1 and counted as a plastic-
emitting river if the annual plastic emissions are more than 0.1 MT 
year−1. Our model reveals that emissions are more widely distributed 
between contributing rivers with 1656 (range of 1348 to 1668 based 
on best calibrated lower and upper scenarios) rivers accountable for 
80% of the global emissions against previously reported 47 and 5 rivers 
(Fig. 3A) (10, 11). In this study, we calculated a high-resolution dis-
tribution (3 × 3 arc sec) of probability P(E) for waste discarded on 
land to reach the ocean. P(E), with a global average of 0.4%, varied 
considerably between 0% for land-locked regions and up to 80% for 
coastal urban centers located near a river. When combined with dis-
tribution of waste generation on land, emission probabilities greatly 
increased the number of estimated riverine emission locations. This 
resulted in a considerably different ranking of the largest contributing 
rivers compared with previous assessments (top 50 rivers presented 
in table S5), as well as predicting the emergence of small rivers in 
the top ranking, for example, the Klang River in Malaysia.

On the basis of recent field observations and by considering 
probabilities of transport of plastic waste on land at high resolution 
within a river basin, we showed that land use, distance from waste 
generation to the nearest river, and coastline play a more important 
role than the size of the river basin itself. Hence, coastal cities associated 
with urban drainage and paved surfaces presented the highest emis-
sion probabilities, particularly in regions with high precipitation rates. 
On average, river basins with the dominant land use “artificial sur-
faces” are calculated to have a larger probability to emit plastic into 
the ocean than river basins with predominantly “cultivated land” 
(13 and 2%, respectively) and are observed and modeled to emit 
larger fractions of plastic waste into the ocean (15 and 3%, respec-
tively) (see tables S6 and S7). To illustrate this, we compare the 
Ciliwung River, Indonesia and the Rhine River, Western Europe. The 
Ciliwung River basin on Java, which is much smaller than the Rhine 
River basin (respectively, 591 km2 versus 163,000 km2) and with less 
total generation of plastic waste (respectively, 19,590 MT year−1 ver-
sus 34,440 MT year−1), emits two orders of magnitude more plastic 
into the ocean (308 MT year−1 observed and 205 MT year−1 mod-
eled for the Ciliwung River, and 3 MT year−1 observed and 5.4 MT 
year−1 modeled for the Rhine River). This difference is caused by the 
differences in geometry and climate between the two river basins and 
the spatial distribution of waste generation. In the Ciliwung River 
basin, waste is generated at 1 km from the river network on average 
and 29 km from the ocean. Waste generation in the Rhine River occurs, 
on average, at a much greater distance from the river network and 
the ocean with an average of 5 and 1021 km from the river network 
and the ocean, respectively. Moreover, the annual precipitation (29) 
in the Ciliwung River basin is more than 2.5 times larger than for 
the Rhine River basin (2445 mm year−1 against 950 mm year−1), 

Fig. 2. Observations compared with modeled data for floating macrolitter 
emissions per river. Regression analysis carried out with 136 records from 67 differ-
ent rivers of different sizes spread across the globe. The dataset was split into a cali-
bration (n = 52) and a validation (n = 84) dataset. The coefficient of determination 
of the logarithmic regression, r2, is 0.71 for the calibration and 0.74 for the validation 
dataset. Symbols indicate midpoints of extrapolated measurements (MT month−1) 
on the x axis versus our best calibrated model prediction on the y axis. The horizontal 
whiskers indicate the upper and lower values reported for observational data (if 
published), and the vertical whiskers indicate the upper and lower value of the 
68% confidence interval of model predictions. The dark blue symbols correspond 
to data points used for calibration, and light blue symbols represent the validation 
data points, while the symbol (triangle, circle, and square) indicates the continent 
from where the location originates. The logarithm of both the measurements and 
the model results is presented here. The dotted gray lines represent one-order-of-
magnitude deviation from the x = y line in the middle. The Kuantan and Besos rivers 
(indicated in red) are outliers with more than one order of magnitude difference 
compared with observational results.
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further increasing the mobilization of plastic waste. The resulting aver-
age probability of waste to reach the river mouth for the Ciliwung 
River basin was 15.7% versus 0.04% for the Rhine.

We divided the 1656 rivers accountable for 80% of emissions over 
five river discharge, Q (m3 s−1), classes (Figs. 3B and 4A). The first 
class contains rivers with Q < 10 m3 s−1; the second class with 10 m3 
s−1 < Q < 100 m3 s−1; the third class with 100 m3 s−1 < Q < 1000 m3 
s−1; the fourth class with 1000 m3 s−1 < Q < 10,000 m3 s−1; and the 
fifth class with Q > 10,000 m3 s−1. We found that the 830 rivers in 
the first class combined account for 30% of global emissions. Middle-
sized rivers, 582 and 211 in classes 2 and 3, respectively, combined 
account for 47%. Both in number (27 and 6 rivers in classes 4 and 5, 
respectively) and in combined emissions (2 and 1%, respectively), 
the large rivers account for a relatively small fraction. The remain-
ing 20% of emissions is divided over 30,248 rivers of varying size 
and low (<92 MT year−1) emissions per river. Our results therefore 
suggest that focusing on implementing mitigation measures in small- 
to medium-sized rivers already could considerably reduce plastic 
emissions.

Predicting national emissions and potential for plastic waste 
leakage into the ocean
We estimated that 1.5% (range, 1.2 to 4.0%) of the 67.5 million MT 
(25) of total globally generated MPW enters the ocean within a year. 
However, on a national level, the fraction of discarded waste enter-
ing the ocean differs considerably between countries (Fig. 4B). Our 
results indicate that countries with a relatively small land surface 
area compared to the length of their coastline and with high precip-
itation rates are more likely to emit ocean plastics (table S8). Partic-
ularly, for areas in the Caribbean such as the Dominican Republic 
and tropical archipelagos such as Indonesia or the Philippines, this 
results in a higher ratio of discarded plastic waste leaking into the 
ocean, respectively, 3.2, 6.8, and 8.8%. The plastic emissions of these 
countries are therefore disproportionally higher compared to coun-
tries with similar MPW concentrations but different geographical and 
climatological conditions. For example, Malaysia generates more than 
10 times less MPW than China (0.8 million MT year−1 in Malaysia 
against 12.8 million MT year−1 in China); however, the fraction of total 
plastic waste reaching the ocean is 9.0% for Malaysia and only 0.6% 

Fig. 3. Global distribution of riverine plastic emission into the ocean. (A) Contribution of plastic emission to the ocean (ME) (y axis) is plotted against the logarithm of 
the number of rivers accountable for that contribution (x axis), for previous studies and this study. (B) Distribution of 1656 rivers accountable for 80% of emissions over 
five discharge classes (x axis). Each river is represented by a dot. Within a discharge class, the position of a river (dot) is determined by the plastic emission (y axis). The 
boxes contain 50% (Q1 until Q3) of the data, and the solid horizontal line in the box is the median, while the dotted horizontal line represents the average emission per 
river within the discharge class.
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for China. The largest contributing country estimated by our model was 
the Philippines with 4820 rivers emitting 356,371 MT year−1 (8.8% 
of the total generated MPW in the country), followed by India with 
126,513 MT year−1 (1.0% of total generated MPW through 1169 rivers), 
Malaysia with 73,098 MT year−1 through 1070 rivers, and China with 
70,707 MT year−1 through 1309 rivers (see Table 1 and Fig. 4C).

DISCUSSION
Our study predicts that riverine plastic emissions into the ocean are 
distributed across a much larger number of rivers than reported in 
previous modeling studies. The number of rivers responsible for 
80% of global emissions (1656 in this study) is one to two orders of 
magnitude higher than previously reported [47 rivers (10) and 5 rivers 
(11)]. An important difference is that in previous studies, MPW was 

lumped within a river basin, leading to disproportionally high pre-
dictions of plastic emissions for large rivers while smaller rivers may 
have been underestimated. In this study, we considered the spatial 
variability of MPW generation within a river basin and introduced 
climate and terrain characteristics to differentiate the probability for waste 
to leak into rivers and subsequently the ocean. Therefore, MPW near 
a river and near the coast has a relatively high probability of entering 
the ocean, while MPW far upstream in a basin has a lower probability of 
entering the ocean. By considering these parameters, relatively small yet 
polluted river basins contribute proportionally more compared to large 
river basins with equal amounts of MPW generation within the river 
basins. Cities such as Jakarta and Manila are drained by relatively small 
rivers, yet observations and our model suggest that these rivers con-
tribute more than rivers such as the Rhine or the Seine, for which 
the MPW generation is similar yet located further upstream.

Fig. 4. Global emissions of plastic into the ocean. (A) The geospatial distribution of plastic entering the ocean through rivers. The 1656 rivers accountable for 80% of the 
total influx are presented. The gray shading indicates the probability for plastic entering the ocean [P(E)] on a 10 × 10–km resolution. (B) Total emitted plastic into the 
ocean ME per country divided by the national generation of MPW, globally ranging between 0 and 20%. (C) Total emitted plastic into the ocean ME (MT year−1) per country.
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The results from this study are important for the prioritization 
and implementation of mitigation strategies. The large number of 
emission points predicted by our model calls for a global approach 
to prevent, reduce, and collect macroplastic waste in aquatic envi-
ronments instead of focusing on just several rivers. Furthermore, 
our results suggest that small- and medium-sized rivers account for 
a substantial fraction of global emissions. Predicted emissions pre-
sented in this study suggest that, besides the annual plastic emis-
sions into the ocean, most plastic waste (98.5%) remains entrapped 
in terrestrial environments where it accumulates and progressively 
pollutes inland (aquatic) ecosystems. As most MPW is generated 
and remains on land, prevention and mitigation regulations for 
land-based waste reduction, collection, and processing as well as 
cleanups will naturally yield the largest impact on reducing the 
emissions of plastic into the ocean.

Understanding the total annual global riverine plastic emissions 
into the oceans is an important input for mass balance exercises and 
mapping the severity and fate of macroplastic pollution in the ocean. 
We calculated the annual global emissions to be between 0.8 million 
and 2.7 million MT. This in the same order of magnitude as previ-
ous river emission assessments, which estimated 1.15 million to 
2.41 million MT (10) and 0.41 million to 4 million MT (11) for global 
riverine plastic emissions. However, a wider distribution of emission 

points in this study led to a new ranking of top contributing rivers, 
where the Pasig in the Philippines is now the most polluting river. It 
is good to note that, in comparison with the observational data from 
the Pasig river, the model overestimates the plastic emissions for this 
river; however, measurements were taken at the end of an unusually 
dry season (2019). This highlights the importance of including more 
detailed temporal variations in future model and observational 
studies, as well as the fact that model predictions could vary up to a 
factor of 10 (with 95% confidence) from field observations. Confi-
dence intervals (95%) are therefore included in the list of the 50 most 
plastic-emitting rivers (table S5). The Yangtze River, which was 
previously estimated as the highest plastic-emitting river (10, 11), is 
now ranked 64th by our model. The Yangtze catchment is one of 
the biggest river basins with a very high total amount of MPW gen-
eration. However, the distance from MPW generation to the river 
and to the ocean is considerable as well. Therefore, according to our 
model, only a relatively small fraction of MPW reaches the Yangtze 
River and even a smaller fraction subsequently reaches the ocean. It 
is important to note that we calibrated our model against visual ob-
servations of macroplastics (>0.5 cm in size) and, therefore, we are 
not considering microplastic transport. Global riverine microplas-
tic emissions are estimated to be several orders of magnitude lower 
(17) than our macroplastic emission estimate (47,000 MT/year, for 

Table 1. Country statistics. Top 20 countries ranked according to annual plastic emission ME into the ocean, as calculated in this study. The third column 
contains the annual MPW generated in each country. The fourth column contains the fraction (%) of MPW reaching the ocean (calculated by dividing national 
ME by MPW) within a year. The fifth column contains the country averaged probability for a plastic particle to reach the ocean within a year, P(E). This sixth 
column contains the number of rivers accountable for national emission ME, and the last column holds the number of rivers for a country that contribute to the 
global 80% riverine plastic emission (emitted by 1656 rivers in total). 

Country ME (MT year−1) MPW [MT year−1]
Ratio of MPW to 

ocean (ME per 
MPW)

Average emission 
probability P(E) 

(%)

Number of rivers 
contributing to 

100% ME

Number of rivers 
contributing to 

80% ME

Global 1.0 × 106 6.8 × 107 1.5% 0.4% 31,904 1656

Philippines 3.6 × 105 4.0 × 106 8.9% 7.2% 4820 466

India 1.3 × 105 1.3 × 107 1.0% 0.5% 1169 211

Malaysia 7.3 × 104 8.1 × 105 9.0% 4.4% 1070 105

China 7.1 × 104 1.2 × 107 0.6% 0.2% 1309 139

Indonesia 5.6 × 104 8.2 × 105 6.8% 4.4% 5540 105

Myanmar 4.0 × 104 9.9 × 105 4.0% 1.7% 1596 71

Brazil 3.8 × 104 3.3 × 106 1.1% 0.2% 1240 75

Vietnam 2.8 × 104 1.1 × 106 2.5% 1.6% 490 68

Bangladesh 2.5 × 104 1.0 × 106 2.4% 2.3% 588 36

Thailand 2.3 × 104 1.4 × 106 1.7% 0.9% 624 48

Nigeria 1.9 × 104 1.9 × 106 1.0% 0.4% 301 25

Turkey 1.4 × 104 1.7 × 106 0.9% 0.4% 659 29

Cameroon 1.1 × 104 5.8 × 105 1.8% 0.5% 176 14

Sri Lanka 9.7 × 103 1.6 × 105 6.2% 3.4% 147 16

Guatemala 7.1 × 103 3.1 × 105 2.3% 1.7% 79 16

Haiti 6.9 × 103 2.4 × 105 2.9% 3.0% 233 22

Dominican Republic 6.3 × 103 1.9 × 105 3.2% 2.6% 186 11

Venezuela 6.0 × 103 6.7 × 105 0.9% 0.4% 224 11

Tanzania 5.8 × 103 1.7 × 106 0.3% 0.2% 102 8

Algeria 5.8 × 103 7.6 × 105 0.8% 0.1% 109 20
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a recent past scenario). Although plastic observations are extra
polated to the entire water column, our model does not include riv-
erbed transport of plastic waste. Hence, our global riverine emission 
estimate can be considered conservative in the sense that it likely 
underestimates the total flux. We note that our estimated range for 
emissions in 2015 is one order of magnitude lower than a previous 
prediction for plastic waste inputs from land into the ocean (9) for 
2010 (range, 4.8 million to 12.7 million MT year–1). This study did 
not specify a transport mechanism and includes all emissions into 
the ocean and not only riverine emissions, which emphasizes the 
uncertainty related to estimating plastic waste generation and emis-
sions as well as the need for additional ground truth data.

Previous studies (10, 11) on global river emissions of plastic in 
the ocean were mainly calibrated against data collected in European 
and North American rivers. Following the recommendations from 
these studies, we included more data from South East Asian rivers 
to refine our model predictions. The difference between observed 
and calibrated modeled emissions is within one order of magnitude 
for 51 of 52 observational data points. Our model validation against 
84 observed emissions yields 74 of 84 data points within one order 
of magnitude, with a clear explanation (four weirs upstream) for the 
10 data points outside one order of magnitude. Given the uncertainty 
in observational accuracy and MPW data, we consider this an ac-
ceptable result and a major improvement compared to the perform
ance of previous models. This study is limited to monthly average 
and annual emissions intended for the quantification of global riverine 
plastic transport and river-to-river comparisons. We expect tempo-
ral variations in discharge, and especially floods, to have a large im-
pact on macroplastic mobilization and transport, as was found for 
microplastics (30). Therefore, future studies should include a higher 
resolution for temporal hydrological variations, aimed at better ac-
counting for extreme events such as floods and quantifying their 
contribution to emissions. The model parameters chosen for this 
study are based on expert elicitation and calibration on field obser-
vations. More research and data are required to improve and vali-
date the established relationships in this study. It is important to 
note that this study does not differentiate between types and char-
acteristics of plastic waste. Mobilization, transportation likelihood, 
and buoyancy may be influenced by plastic particle properties such 
as shape, weight, and density. Therefore, the transport of plastic of 
different types and sizes should be differentiated in future assess-
ments. Our global model does not include changes in national waste 
management policies nor the contributions of the informal recov-
ery sector. It is good to note that the input MPW has a great impact 
on the results. Future research into plastic waste generation, prac-
tices, and distribution could substantially improve the accuracy of 
the model output. We also do not consider the presence of regulat-
ing structures in rivers such as dams, weirs, or trash racks and local 
extraction efforts, which have been reported to act as sinks for mac-
roplastics (27). Depending on the operational characteristics, artifi-
cial structures in rivers, such as dams, may have a substantial impact 
on the downstream transport of plastics (10). We acknowledge the 
need for local modeling and observational studies to better address 
local conditions. The sensitivity analysis shows that the model is 
sensitive to changes in the probability for plastic waste to be trans-
ported 1 km downstream in a river. Future fieldwork aimed at mea-
suring the trajectory (distance traveled downstream in time) of plastic 
particles in rivers is recommended. The uncertainty in parameter 
values should be minimized by conducting extensive monitoring 

campaigns on plastic mobilization and transport behavior rather 
than extensive calibration. Population densities, waste management 
practices, and consumption patterns are subject to change, leading 
to a varying generation of MPW (25). Ongoing efforts to improve 
global datasets on land cover, precipitation, and elevation continue 
to deliver more accurate input datasets. Our probabilistic modeling 
approach and framework allow for the inclusion of these improved 
datasets and benefit from parameterizations derived from local models 
with high-resolution temporal and spatial data on plastic transport 
and hydrology.

Our results include a global dataset of 31,904 locations representing 
river mouths and their estimated emissions. It is important to con-
sider that emission values of individual rivers predicted by our best 
calibrated model may vary around a factor of 4 (68% confidence 
range) to a factor of 10 (95% confidence interval) from field obser-
vations. These data will be publicly available for researchers, policy-
makers, and citizens to identify and address the nearest polluting 
river. Insights from this study should be combined with local field 
studies and local context from various scientific fields to effectively 
address plastic pollution in rivers and design and implement miti-
gation measures and strategies.

MATERIALS AND METHODS
Model formulation
The probability P(E) for plastic waste, discarded on land, to be 
emitted into the ocean is constructed from the probability of inter-
section of three events: M (mobilization on land), R (transport from 
land to a river), and O (transport from the river to the ocean)

	​ P(E ) = P(M ∩ R ∩ O ) = P(M ) × P(R ) × P(O)​	 (1)

For each 3 × 3–arc sec grid cell, the amount of plastic waste leaking 
into the ocean is therefore calculated by multiplying the probability 
P(E) with the total amount of generated MPW mass (kg year−1) within 
the cell. The total annual emission ME of plastic into the ocean from 
a river is then computed by accumulating this product for all n grid 
cells contained in the river basin

	​​ M​ E​​  = ​ ∑ n​ ​​ MPW × P(E)​	 (2)

Similarly to sediment (31) and debris (32), plastic waste may be 
mobilized during events of rainfall (33) where surface runoff accu-
mulates and entrains plastic waste over the surface. Larger rainfall 
events may trigger buoyant transport of plastic litter. The amount 
of runoff, which is a fraction of rainfall, can vary depending on the 
land use, characteristics of the rain event, temporal variability of 
rainfall, and its distribution over the year. These variations can have 
a substantial impact on runoff and, therefore, on plastic transport 
triggered by rainfall. The relationship between runoff and plastic 
transportation, including hydrological thresholds, can be different 
depending on river basin characteristics. In this study, we focus on 
spatial variability and differentiation. For this study, we assume that 
annual wind and precipitation data are a good proxy for transport 
and mobilization probability. Global precipitation analysis suggests 
that areas with higher total annual precipitation also experience 
more frequent and intense rainfall events (34). In areas with little or 
no rainfall, wind can still mobilize and transport littered plastic waste 
on land, particularly from open-air landfills (35). Previous studies 
have reported positive correlations between both wind and rainfall 
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with riverine plastic observations (28). If plastic mobilized by wind 
reaches a river, drain, or creek, then the flow dynamics will further 
transport plastic downstream. We do not include a directional com-
ponent for wind in our approach. For this global study, we aim to 
differentiate between regions with little or high precipitation and 
wind and approximate the complex plastic mobilization mecha-
nisms; we do this by assuming a linear relationship between annual 
total rainfall and average wind speed and their corresponding mo-
bilization probability. These relationships are described in table S9. 
In our framework, we consider that plastic waste can be mobilized 
through both events of precipitation and wind. Hence, the proba-
bility of mobilization P(M) can be formulated from the union prob-
ability of precipitation event P and wind event W

	​ P(M ) = P(P ∪ W ) = P(P ) + P(W) ​	 (3)

Probabilities of mobilization by precipitation and wind are lin-
early ranging from 0% (respectively, no rain or no wind) to 100% 
corresponding to an upper threshold (see table S9). For probability 
of mobilization by wind, we consider the maximum monthly aver-
age wind speed (m s−1). The upper threshold for total mobilization 
was set at 32.7 m s−1, which equals to Beaufort 12 (i.e., under hurricane 
conditions, 100% of littered waste is mobilized). The upper thresh-
old for probability of mobilization by rain was determined during 
the model calibration exercise presented later in Model calibration, 

considering the annual rainfall. Data for monthly averaged wind 
speed and annual rainfall were sourced from global 30–arc sec data-
sets distributed by WorldClim2 (29).

For the mobilized fraction of plastic waste, we compute the prob-
ability to reach the nearest river. The river network in our model 
contains the annual average discharge (m3 s−1) on a 3 × 3–arc sec 
spatial resolution and was derived by accumulating annual average 
0.5° × 0.5° runoff between 2005 and 2014 (mm year−1) (36) by a 
nearly global flow direction grid (37). Cells with a discharge higher 
than 0.1 m3 s−1 are considered rivers (38). The shortest downslope 
distance DLand (km) from each grid cell to the nearest location in the 
river network is calculated on the basis of flow direction data. The 
result of this calculation step is a 3 × 3–arc sec grid containing dis-
tance to the nearest river.

The mobilization probability and the travel distance to the nearest 
river are now determined, yet the probability to reach a river also 
depends on the type of landscape between the location of mobilization 
and the nearest river. The objective here is to appreciate differences 
between, for example, flat and mountainous areas or rural and urban 
areas. Similarly to Chezy’s formula (39) and the rational method (40) 
in hydrology, we introduce a “roughness” coefficient based on land 
use classification and the terrain slope to approximate the complex 
mechanisms of overland transport of plastic waste. Here, roughness 
of a cell is defined as the transport probability to the nearest downslope 
cell. Rougher cells have a lower transport probability, while smoother 
cells have a higher transport probability. For example, plastic waste 

Fig. 5. Probability maps. (A) The Meycuayan and Tullahan river basins and river network in Manila, Philippines. (B) The distance (km) from a 3 × 3–arc sec grid cell toward 
the nearest river. (C) The distance (km) from each grid cell to the ocean, through the river network. (D) The probability for a grid cell to emit plastic waste into the ocean 
P(E), Eq. 1, for a given year, ranging from 0 to 5% for areas further away from a river up to 0.8% for areas near a river and near the coast.
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will more likely be transported by wind or rain on paved surface 
than in dense vegetation (33, 41). Higher-plastic observations are 
reported near the outlets of storm drainage, associated with urban-
ized land use, while areas further away from infrastructure have 
lower reported plastic litter concentrations (41). Vegetated areas, 
such as forests, provide more shelter and entanglement than bare 
areas, reducing the transport and mobilization probability by wind. 
Differences in roughness within a land use class including directional 
components may have a substantial impact on local scale but are not 
included in the global spatial resolution of the land use data used in 
this study. Furthermore, the average terrain slope (%) is known to 
increase erosion rates and sediment transport over land (42). Hence, 
the probability of transport to a river will naturally increase with 
terrain slope. The land use data were sourced from 30 × 30–arc sec 
classification distributed by GLC2000 (43) and contains 23 different 
land use classes (table S10), ranging from tree cover, shrub land, 
and cultivated areas to artificial and urban areas. The terrain slope 
was calculated from the 3 × 3–arc sec digital elevation model pro-
vided by HydroSHEDS (37).

We derive the roughness of each cell from land use and terrain 
slope and compute the average probability from the initial emitting 
grid cell to the nearest river cell, according to equations in table S9. 
As roughness is cumulated on the downslope path, the resulting 
probability to reach a river is exponentially decreasing with distance 
to river DLand. The probability of transport to a river is formulated 
as follows

	​ P(R ) = ​​(​​ ​ 
​∑ i=1​ n  ​​ ​ν​ i​​ × (ε × ​s​ i​​ + τ)

  ──────────── n  ​​)​​​​ 
​D​ Land​​

​​	 (4)

where i is the probability for plastic to be transported to the next 
grid cell associated to land use (see classification in table S10) of grid 
cell i, si is the percent slope of cell i,  is the coefficient that deter-
mines the increasing probability with increasing slope,  is the min-
imum threshold probability for areas where the slope is zero (table 
S9), and n is the number of cells from origin to the nearest river cell.

By analogy to the transport of leaves (44) and wooden debris (45) 
by rivers, the probability in our model for plastic introduced in rivers, 
to reach the ocean, increases with river discharge and decreases with 
distance to ocean. Rivers with a higher Strahler (46) stream order 
(SO) have a larger cross section (47) and, therefore, on average, less 
friction (39), decreasing the likelihood for floating macroplastic to 
be intercepted. Therefore, for each river grid cell, we compute the 
distance DRiver to the ocean, the Strahler stream order, and the an-
nual river discharge (m3 s−1). The probability for transport into the 
ocean is calculated as follows

	​ P(O ) = ​​(​​ ​ 
​∑ i=1​ n  ​​(θ × ​SO​ ι​​ + ι ) × (κ × ​Q​ i​​ + μ)

   ──────────────────  n  ​​)​​​​ 
​D​ River​​

​​	 (5)

where i is the probability related to Strahler stream order for cell i 
and  is the lower-threshold rivers with the lowest stream order. Qi 
is the river discharge at cell i,  and  are the probability coefficient 
for increasing discharge and lower threshold probability, respectively 
(table S9), and n is the number of cells from the river entry point to 
the ocean. An example of the different steps leading to the calcula-
tion of probability of emission P(E) is provided in Fig. 5.

Observation-based estimates
We calibrated and validated the river plastic emission model using 
observation-based estimates. We used three types of data: (i) visual 
observations of floating macroplastics from own collection, (ii) 
published datasets of visual observations of floating macroplastics, 
and (iii) a published dataset of collected floating plastic debris. The 
visual observations were done according to the method developed 
for the Riverine and Marine floating macro litter Monitoring and 
Modeling of Environmental Loading. For this method, observations 
are conducted from bridges near river mouths. During each mea-
surement, all floating plastic items are counted for a certain dura-
tion. The data are normalized over time by expressing the data in 
floating plastic items per hour (items hour–1). In general, the mini-
mum observed item size is 0.5 cm, and items are visible in the upper 
10 cm of the water column. We collected 136 data points from 67 
rivers in 14 countries. Data that were collected and published before 
March 2019 were used for calibration, and data published after 
March 2019 were used to validate the model. Hence, we used 52 data 
points for calibration and 84 data points for validation of the model. 
The published field observations used for both calibration and vali-
dation were measured in rivers that have mutually different characteris-
tics regarding total basin area, average land use, rainfall, and MPW 
generation (tables S6 and S7) and were collected on three different 
continents (fig. S4). Statistics on characteristics (minimum, medi-
an, maximum, first quartile, and third quartile) of the full observa-
tional dataset, the calibration dataset, and the validation dataset are 
listed in table S11. This table shows that the calibration and valida-
tion datasets have comparable statistics to the total dataset. We 
consider the data used for both calibration and validation represen-
tative as they are collected in different types of rivers and geographies 
while the total datasets have similar statistics. We use time of publi-
cation as criterion to include data in the calibration or validation. 
An overview of the observational data used in this study is presented 
in table S1 (calibration) and table S2 (validation) (48–53).

We used a three-step approach to estimate the total plastic mass 
transport from the floating plastic observations. In the first step, plas-
tic item flux p (items/hour) is converted from items/hour to mass 
flux using the mean mass per item c (kg per item). For each river, we 
either used the mean mass per item based on available data or used 
a lower and upper estimate based on the range available in the liter-
ature (0.002 to 0.019 kg per item). Second, we estimated the plastic 
mass flux in the upper 1.5 m of the water column using the floating 
fraction. For this fraction, we either used the value from the field 
observations or used a lower and upper estimate based on the global 
range available (0.6 to 0.95%). Last, we estimated the total mass trans-
port over the entire water column using the fraction of transport in 
the upper 1.5 m. Here, a range was used with lower and upper values of 
66 and 79% based on measurements in the Danube (20). Each step 
was performed using a range of values, yielding a lower and upper 
observation–based estimate. We used the middle value for model cal-
ibration and validation and use the range to quantify the uncertainty. 
Note that for the data already expressed as mass transport (e.g., Jones 
Falls and Japanese rivers), the first step was omitted. Data were col-
lected using visual counting measurements of floating macroplastic 
litter from bridges (18, 26). This was converted into mass flux (MT 
year−1) using the following equation

	​​ M​ obs​​  =  p × ​m​ p​​ × c​	 (6)
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With observed floating plastic transport p (items hour−1), mp 
mean mass per plastic item (kg per item), and conversion factor c to 
account for plastics at deeper layers. We used both monthly and 
annual estimations in the comparison with the model results. Vari-
ables mp and c were measured at each river through net sampling at 
the same location as the visual counting measurements. If these 
measurements were not available, then we used the global or re-
gional average values (table S1).

Expert elicitation and initial parameter bandwidths
To constrain our model parameters, an expert survey was conducted 
during the European Geosciences Union General Assembly, 
April 2019, in Vienna, with a panel of 24 geoscientists. In addition, the 
same survey was conducted online in 2020 to obtain a more global 
perspective from 36 geoscientists and other professionals active in 
plastic research. In total, this resulted in a panel of 60 experts from 
39 organizations in 23 different countries across five continents (see 
fig. S5 for the global distribution of the expert panel). The advantage 
of benefitting from the intuitive experience of experts to assess com-
plex modeling problems has been reported for hydrology (54) and 
ecology (55). Here, a series of seven questions related to the proba-
bility of plastic waste transport over land and through rivers were 
asked to individual experts. The questions are presented in table 
S12, while the individual responses are given in table S13. From this 
elicitation exercise, we calculated the average and SD of returned 
values for each question (table S14). These data determined the ini-
tial bandwidth for our parameters during the model calibration 
(i.e., while varying our model parameters when comparing with 
measurements, the resulting probability should remain in the range 
determined by experts elicited for this study, avoiding unreasonable 
parameter values).

The bandwidth for probabilistic parameters in our model can range 
between 0 and 100%. The parameter bandwidths presented in table 
S14 have been reduced on average by 46%. Sensitivity analyses, cal-
ibration, and validation further confine and support the parameter 
bandwidths and result in a parameter set that is in line with expert 
expectations and is optimized for the highest correlation (coeffi-
cient of determination) with field observations and the lowest ratio 
between observed and predicted plastic mass.

Model calibration
Our model predicts annual plastic emissions, which are scaled by 
monthly average discharge, to distribute these emissions over 12 months. 
As is common for complex environmental models, we calibrated our 
model, on the basis of output from the expert elicitation and sensi-
tivity analysis, in an iterative way (56). First, we ran a version of the 
model to match the average values reported by the expert elicitation 
exercise. We evaluated the model performance by calculating the 
regression coefficient r2 between the logarithms of measured and 
modeled monthly averaged emissions and calculated the ratio be-
tween the sum of all observed and modeled plastic emissions. 
Under these conditions, the model-estimated emissions appeared 
higher than observations. We initially decreased the probability for 
plastic waste to be transported from land to a river cell P(R) by pro-
gressively increasing the roughness related to land use, as intro-
duced in Eq. 4.

Second, the model overestimated emissions of rivers where pre-
cipitation was relatively higher than other rivers, when compared to 
observations. We adjusted our model results by decreasing the 

probability of mobilization P(M) induced by precipitation, as intro-
duced in Eq. 3 based on results from the sensitivity analysis.

Third, the emissions of river basins where the generation of MPW 
is occurring further away from the mouth were underestimated 
(e.g., the Motagua in Guatemala and the Seine in France). There-
fore, we altered our model predictions by increasing the probability 
of transport from river entry to ocean P(O), as presented in Eq. 5.

This model calibration exercise resulted in eight global iterations 
that are presented in table S4, showing the score model versus mea-
surement per iteration, for the different parameters considered by 
our model. Our best calibrated scenario returned a regression coef-
ficient of determination r2 = 0.71 between modeled and measured 
logarithm of monthly average emissions per river and with 51 data 
points modeled within one order of magnitude (fig. S1) from measure-
ments. For this parameter set, we found that the sum of 51 predicted 
emissions exceeds the sum of observed emissions by only 6%, which 
we consider acceptable, in combination with the relatively high r2.

Workflow sensitivity analyses
Sensitivity analyses were performed to assess the sensitivity of the 
output of the model (tons of macroplastic emission per year per river 
mouth, ME) to parameter variations of all parameters in model Eqs. 
4 and 5. Both a global sensitivity analysis and a local sensitivity analysis 
were conducted to assess the impact of interactions between vary-
ing parameters and the impact of varying an individual parameter. 
The global, all-at-a-time (AAT) sensitivity analysis provides insight 
into the interactions between input parameters and is implemented 
in this study using Monte Carlo techniques. The local, OAT sensi-
tivity analysis provides insight into the response of the model to 
(extreme) variations of an individual parameter, while all other pa-
rameters are fixed. Parameters for the AAT method were randomly 
sampled from uniform distributions and cover a larger bandwidth 
than the boundaries provided by expert elicitation to explore a broader 
parameter space (table S15). For the AAT analysis, three river ba-
sins were selected to balance computational time and representabil-
ity. For these basins, the model output of 100 parameter sets was 
obtained. The three river basins used for the simulation runs are the 
Tullahan, Motagua, and Jones Falls. These river basins have different 
annual rainfall, surface area, dominant land use, and average dis-
tances to the river (within the basin) and to the coast (within a river) 
(characteristics listed in tables S6 and S7). For the OAT analysis, 
each parameter was decreased and increased with an order of mag-
nitude, while the remaining parameters remained constant (table S16), 
resulting in 16 simulation runs (2 simulations per parameter, for 
eight parameters). This analysis was performed for eight river basins 
(31 data points). The river basins used for the OAT analysis were 
the Pasig, Tullahan, Meycauayan, Jones Falls, Motagua, Ciliwung, 
Pesanggrahan, and Tiber (characteristics listed in table S6). We used 
correlation, regression analysis (coefficient of determination and 
Pearson correlation coefficient), and the ratio between the total 
simulated and observed plastic mass as evaluation metrics suggested 
by a study on sensitivity analysis workflows for environmental 
models (56). On the basis of the evaluation metrics, the sensitivity 
of the model was assessed, discussed, and lastly visualized in graphs 
and scatterplots.

Calculation process sensitivity analyses
For the AAT analysis, we performed 100 model runs for the three 
selected river basins, resulting in 100 output sets (plastic emission, 
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ME) for three data points (rivers). This model output was compared 
with the model output of the best calibrated global parameter set for 
these three specific rivers. In the next step, to evaluate the perform
ance and sensitivity of the complete parameter set, we calculated the 
coefficient of determination (r2) of the output of the 100 randomly 
generated parameter sets with the output of our best calibrated global 
parameter set (three points per set). Subsequently, we calculated the 
Pearson correlation coefficient between each parameter and the cor-
responding coefficient of determination (r2), and we calculated the 
Pearson correlation coefficient between each parameter and the cor-
responding plastic emission ME for each river basin. These two met-
rics provide insight into the impact of an individual parameter on 
the model output (plastic emission) and on the performance of the 
parameter variations to our best calibrated model on field observa-
tions, while other parameters are varied simultaneously. We divided 
the 100 parameter sets in three batches (R1 = 50 runs, R2 = 25 runs, 
and R3 = 25 runs) and assessed the impact of the variations of pa-
rameter values (input) on the model output for individual river ba-
sins using the method of visual inspections of the scatterplots (56).

For the OAT analysis, we performed 16 model runs for nine se-
lected rivers with 31 data points (monthly and annual data, varying 
per river). Each parameter was increased or decreased by a factor of 
10. The output (tons of plastic emission per river) was compared to 
both our best calibrated model and field observations. Subsequently, 
the coefficient of determination for the individual 16 scenarios and 
the best calibrated scenarios was calculated compared to the obser-
vations. Last, the ratio between the sum of modeled and observed 
plastic emissions was calculated for 16 scenarios and the best cali-
brated scenario.

Sensitivity analyses discussion
Figure S6 and table S17 show that the model is sensitive to all pa-
rameter values (adjusting parameter values leads to changes in model 
output) but not in an equal manner. Increasing probabilistic pa-
rameters results in increased model output; however, the r2 can de-
crease for both increasing and decreasing parameter values. Low 
correlation values (ranging between −0.10 and 0.10, for example) imply 
that variations (within bandwidths listed in table S15) have limited 
impact on the output of the model, while high correlation values 
(between −0.50 and −1.00 and between 0.50 and 1.00) imply that 
variations of parameter values have a greater impact on the model 
output and, therefore, on the coefficient of determination with the 
best calibrated scenario. After the first 50 runs (R1), we fixed the lower 
threshold stream order probability and lower threshold discharge 
probability from Eq. 5. These parameters show strong positive cor-
relations with the r2, and hence, variations in these parameters have 
a large impact on the model output. This confirms the sensitivity of 
the model for river transport, P(O) in the framework, and supports 
assigning a realistic bandwidth to the parameters (as supported by 
expert elicitation). The next 25 runs (R2) reveal a high sensitivity for 
the stream order (and, to a lesser extent, discharge) coefficients, the 
coefficients that cause the threshold probability to increase for bigger 
rivers. Increasing the stream order coefficient results in a strong neg-
ative r2. Parameters are included in Eqs. 4 and 5, further described 
in table S9. On the basis of individual assessments of river basins, 
this parameter was fixed at a lower value, according to the best cali-
brated scenario, confirming both the sensitivity and the selected con-
fined bandwidth. Last, R3 further confirms sensitivity to remaining 
parameters.

Responses for individual river basins can be different, for exam-
ple, river basins with higher precipitation rates (Tullahan) have a 
higher correlation between the rainfall coefficient and model output. 
Scatterplots between the coefficient of determination of the model 
output and parameter variations for each parameter are presented 
in figs. S7 and S8. These scatterplots show that increasing parameter 
values results in higher model output for most parameters. This cor-
relation depends on the parameter (sensitivity) and the river basin 
characteristics. The optimum value for a parameter can be assessed 
with the r2, showing that increasing parameter values can lead to a 
decreased performance. The longest river, the Motagua River, is very 
sensitive to the probability for plastic to be transported downstream.

The one-order-of-magnitude OAT sensitivity analysis shows that 
the model is sensitive to all parameter variations (fig. S9 and table 
S18); however, there are substantial differences between the r2 and 
ratio (modeled divided by observed total plastic emissions) per pa-
rameter. Increasing or decreasing the plastic mobilization probabil-
ity P(M), by altering the rainfall and wind coefficient, reduces the r2 
from 0.76 (best calibrated scenario) to between 0.28 and 0.66. The 
total plastic emission ratio varies between 0.23 and 2.40. These re-
sults suggest that increasing or decreasing wind and rainfall mobili-
zation by a factor of 10 results in under- or overestimations of the 
model between a factor of 2.4 and 4. Variations of an order of mag-
nitude in the probability for waste to reach a river P(R), by changing 
the slope and land use parameters, yield an r2 between 0.45 and 0.82 and 
a ratio of emission between 0.46 and 1.46. The model is most sensi-
tive to changes in probability of waste in a river to reach the ocean, 
P(O). A decrease of an order of magnitude of the lower thresholds 
of stream order and discharge probability results in a negative r2 and 
large ratios between total observed and simulated plastic mass. The 
sensitivity of the model in correlation (r2) and the ratio between 
simulated and observed plastic emissions are presented per param-
eter and grouped for mobilization and for overland and riverine 
transport of plastic. Variations of parameters by a factor of 10 result 
in small ratios in output for mobilization and overland transport. For 
riverine transport, a decrease in the threshold for the probability of 
plastic to be transported 1 km downstream by a factor of 10 (from 
~99 to 9.9%, for example) results in a factor of ~350 lower modeled 
transport. Calibration on field observations and parameter assess-
ments from expert elicitation suggest river transport probabilities 
between 80 and 100%.

The sensitivity analyses show that the model output is sensitive 
to all parameters, both when they are varied simultaneously in in-
teraction with other parameters (AAT) and individually (OAT). The 
AAT analysis indicates that the sensitivity also depends on river basin 
characteristics. The model performance decreases when parameter 
values move outside the bandwidth provided by expert elicitation 
and calibration, when compared to field observations. Both analy-
ses suggest that the model is the most sensitive to the probability for 
plastic to be transported downstream a river.

Validation
We compared our best calibrated model simulation with indepen-
dent field observations (tables S2 and S3). Data points were collected 
from published literature on (macro)plastic transport. These 84 data 
points originate from 51 rivers in six countries. We consider the 
Besos River (10 data points) an outlier because there are four weirs 
that may act as a sink for plastics (27) directly upstream of the ob-
servation point (28). The remaining 74 data points are roughly within 
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one order of magnitude from modeled values, and we demonstrated 
a good order-of-magnitude correlation (coefficient of determination, 
r2 = 0.74, n = 74). The ratio between the sum of the modeled and 
observed data points is 1.73. Data points range from rivers with small 
emissions (~0.1 MT month–1) to large emissions (~10,000 MT month–1) 
(fig. S2). We do recognize that most of the data points used for val-
idation are situated in Japan (39 of 51 rivers). This study reports 
combined microplastic and macroplastic emissions per prefecture 
with macroplastics representing, by far, most of the emitted mass. 
We conducted a separate assessment where we merged the 39 Japanese 
rivers into 1 data point, resulting in 36 data points from 12 rivers 
and 1 data point representing the Japanese prefectures (fig. S3). By 
doing so, the coefficient of determination became higher with 
r2 = 0.84, indicating that our validation results are not biased by the 
inclusion of many rivers from one single country.

Confidence intervals
We constructed confidence intervals for our model by considering 
the difference between 125 observed and simulated data points. We 
take the residuals of the logarithm of model simulations and field 
observations according to

	 ​​Log​ 10​​(observation ) – ​Log​ 10​​(model ) = ​Log​ 10​​(observation / model)​	(7)

We investigated whether the distribution of the ratio of the log-
arithm of 125 observations divided by model simulations can be assumed 
to be normally distributed. The Anderson (table S19) and Shapiro 
tests do not reject the normality assumption [Shapiro P(95) = 0.266 
and Anderson-Darling test statistic = 0.259], and the Q-Q plot (fig. 
S10) shows a normal distribution. Therefore, the mean of the ratio 
of residuals and confidence intervals can be calculated with the SD 
for 68 and 95% (means ± 1 or 2 SDs, respectively). On the basis of 
125 observations, the confidence interval for our model is a factor of 
4 for the 68% confidence interval and 10 for the 95% confidence 
interval. It should be noted here that a negative ratio of −4 is equal 
to a ratio of 0.25 and implies that the model overestimates the plas-
tic emission by a factor 4. Positive ratios mean that the model un-
derestimates plastic emissions. Both a factor of −1 and 1 mean that 
observed and model-simulated plastic emissions are equal.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/18/eaaz5803/DC1
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