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Abstract Marine protected areas (MPAs) provide place-
based management of marine ecosystems through various
degrees and types of protective actions. Habitats such as
coral reefs are especially susceptible to degradation result-
ing from climate change, as evidenced by mass bleaching
events over the past two decades. Marine ecosystems are
being altered by direct effects of climate change including
ocean warming, ocean acidification, rising sea level,
changing circulation patterns, increasing severity of storms,
and changing freshwater influxes. As impacts of climate
change strengthen they may exacerbate effects of existing
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stressors and require new or modified management
approaches; MPA networks are generally accepted as an
improvement over individual MPAs to address multiple
threats to the marine environment. While MPA networks are
considered a potentially effective management approach for
conserving marine biodiversity, they should be established
in conjunction with other management strategies, such as
fisheries regulations and reductions of nutrients and other
forms of land-based pollution. Information about interac-
tions between climate change and more “traditional”
stressors is limited. MPA managers are faced with high
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levels of uncertainty about likely outcomes of management
actions because climate change impacts have strong inter-
actions with existing stressors, such as land-based sources of
pollution, overfishing and destructive fishing practices,
invasive species, and diseases. Management options include
ameliorating existing stressors, protecting potentially resil-
ient areas, developing networks of MPAs, and integrating
climate change into MPA planning, management, and
evaluation.

Keywords Marine protected areas - Management
options - Climate change - Coral reef ecosystems

Introduction

Human impacts have degraded marine ecosystems pri-
marily through overexploitation and destructive fishing
practices, pollution, and climate change. Overfishing and
pollution have long histories (Jackson and others 2001;
Lotze and others 2006; Roberts 2007), and presumably
lower the resistance and resilience of marine ecosystems to
further impacts from climate change. Comprehensive rec-
ommendations have been made for improving ocean policy
in light of these threats (POC 2003; USCOP 2004) and for
mitigating impacts of climate change (IPCC 2007c). At the
same time, there is a pressing need to provide resource
managers with approaches that can help maintain the
structure and function of marine ecosystems in the face of
climate change impacts.

There is growing recognition among scientists and marine
resource managers that ecosystem-based approaches may
help sustain the wide array of services provided by marine
ecosystems (Rosenberg and McLeod 2005; Levin and Lub-
chenco 2008; Palumbi and others 2008; Ruckelshaus and
others 2008). Marine protected areas (MPAs), particularly
no-take marine reserves, can help restore ecosystem struc-
ture and function (Palumbi 2002; Sobel and Dahlgren 2004;
Mumby and others 2006), and help protect marine biodi-
versity and associated ecosystem services (Ballantine 1997;
NRC 2001; Palumbi 2002, 2004; Roberts and others 2003a;
Sobel and Dahlgren 2004; Roberts 2005; Salm and others
2006; Palumbi and others 2009).

MPA networks are generally accepted as an improve-
ment over individual MPAs to address multiple threats to
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the marine environment (Ballantine 1997; Salm and others
2000; Allison and others 2003; Roberts and others 2003b;
Mora and others 2006; McLeod and others 2008b). Net-
works are more effective than single MPAs because net-
works spread the risk of reduced viability of a habitat or
community type following a large-scale disturbance.
Appropriately designed networks are better able to protect
both short- and long-distance dispersers than individual
MPAs and thus have greater potential to achieve conser-
vation and fishery objectives (Roberts 1997). Networks can
utilize local and regional dispersal patterns to enhance
larval recruitment, be designed to protect critical life
stages, and can protect critical ecological processes and
functions such as migration corridors (Gerber and Heppell
2004). Finally, networks allow for protection of marine
ecosystems at an appropriate scale; a network of MPAs can
encompass a wide range of biogeographic and oceano-
graphic conditions as an alternative to one extremely large
area (NRC 2001; Hansen and others 2003).

While MPA networks are considered a critical manage-
ment tool for conserving marine biodiversity, they must be
established in conjunction with other management strate-
gies to be effective (Hughes and others 2003; McLeod and
others 2008b). MPAs are vulnerable to activities beyond
their boundaries. For example, uncontrolled pollution and
unsustainable fishing outside protected areas can adversely
affect species and ecosystem functions within protected
areas (Kaiser 2005). Therefore, MPA networks should be
established considering other forms of resource manage-
ment (e.g., fishery catch limits and gear restrictions) (Alli-
son and others 1998; Beger and others 2003; Kaiser 2005)
and integrated ocean and coastal management to control
land-based threats such as pollution and sedimentation (Cho
2005). In the long term, the most effective configuration
may be networks of highly protected areas nested within a
broader management framework (Salm and others 2006).
Such a framework might include an extensive multiple-use
area integrated with coastal management regimes that help
minimize land-based sources of pollution (e.g., Done and
Reichelt 1998; McLeod and others 2008b).

This article is adapted from a preliminary review of
management options (termed adaptations) for MPAs in the
context of climate change (Keller and others 2008). We
briefly discuss climate change stressors on marine ecosys-
tems and interactions of these stressors with “traditional”
ones, and then discuss options for MPA management in the
context of climate change. We highlight coral reef ecosys-
tems because it was beyond the scope of this review to
comprehensively cover all types of marine ecosystems and
because severe impacts on coral reefs such as mass
bleaching events have been evident for decades and have
been a topic of considerable research (e.g., Hoegh-Guldberg
and others 2007a; Baker and others 2008).
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Climate Change Stressors
Ocean Warming

An average warming of 0.1°C has occurred in the 0-700 m
depth layer of the ocean between 1961 and 2003 (Bindoff
and others 2007). Increasing ocean temperatures affect a
range of organismal physiological processes (Table 1) and
influence ecological processes such as foraging, growth,
and larval duration and dispersal, with ultimate impacts on
the geographic ranges of species (Table 1). Within marine
communities, these temperature changes and range shifts
may result in new species assemblages and biological
interactions (Table 1).

The IPCC (2007a, b) reported that temperature increases
over the last 50 years are nearly twice those for the last
100 years, with projections that global average surface air
temperature will rise 1.8—4.0°C (lowest to highest scenar-
ios) by 2090-2099, largely caused by increasing atmo-
spheric carbon dioxide concentrations. Over the last
20 years, an extensive body of literature has conclusively
linked anomalously high surface seawater temperatures as
the major cause of coral bleaching (Table 1). Increases in
sea surface temperature of about 1-3°C are likely to cause
more frequent and severe mass coral reef bleaching events
(Table 1) and will continue to cause widespread mortality
unless thermal adaptation or acclimatization by corals
occurs (IPCC 2007a). However, the ability of corals to
adapt or acclimatize to increasing sea temperature is lar-
gely unknown (Berkelmans and van Oppen 2006) and
remains a research topic of paramount importance. In 2005,
the most devastating Caribbean-wide coral bleaching event
to date occurred that based on modeling, was highly unli-
kely to have occurred without anthropogenic forcing
(Donner and others 2007).

Ocean Acidification

The ocean absorbs about one-third of the carbon dioxide
added to the atmosphere by human activities each year
(Sabine and others 2004); and the pH of ocean surface
waters has decreased by about 0.1 units since the beginning
of the industrial revolution (Feely and others 2004). A
doubling of the concentration of atmospheric carbon
dioxide, which could occur in as little as 50 years, could
cause major changes in the marine environment, specifi-
cally impacting organisms that build skeletal material out
of calcium carbonate (Table 1). Because of the greater
solubility of CO, in cooler waters, reefs at the latitudinal
margins of coral reef development (e.g., Florida Keys and
Hawaiian Islands) may show the most rapid and dramatic
response to changing pH. On the other hand, McNeil and
others (2004) suggested that net coral reef calcification

rates will increase with future ocean warming and exceed
pre-industrial rates by the year 2100.

Although additional research is needed to resolve this
issue, increasing seawater acidification has been shown in
controlled studies to significantly reduce the ability of reef-
building corals to produce their skeletons, affecting growth
of individual corals and making reefs more vulnerable to
erosion (Langdon and Atkinson 2005; Yates and Halley
2006). Some estimates indicate that at atmospheric CO,
levels close to 2-3 times the pre-industrial levels coral reefs
may erode faster than they can be rebuilt potentially
making them less resilient to other environmental stresses
(e.g., disease, bleaching, storms) (Hoegh-Guldberg and
others 2007a). This could compromise the long-term via-
bility of these ecosystems, perhaps impacting the thousands
of species that depend on reef habitats (McLeod and others
2008b).

Sea Level Rise

During the last 100 years, global average sea level has
risen an estimated 1-2 mm per year and is expected to
accelerate due to thermal expansion of the oceans and
melting ice-sheets and glaciers (Cabanes and others 2001;
Albritton and Filho 2001; Rignot and Kanagaratnam 2006;
Chen and others 2006; Shepherd and Wingham 2007; Bell
and others 2007; IPCC 2007a). Rates of sea level rise at a
local scale vary from -2 to 10 mm per year along U.S.
coastlines (Nicholls and Leatherman 1996; Zervas 2001;
Scavia and others 2002). The consequences of sea level rise
include inundation of coastal areas, erosion of vulnerable
shorelines, landward shifts in species distributions, and
saltwater intrusion into estuaries and aquifers (Klein and
Nicholls 1999) (Table 1). However, coastal development
may interfere with landward plant migrations and cause
submergence of wetlands and waterlogged soils, which in
turn result in plant physiological stress or die-off. Deple-
tion or loss of marshes, mangroves, and dune plants would
affect nutrient flux, energy flow, and essential habitat for a
multitude of species (Table 1).

Variability in Ocean-Atmosphere Interactions
and Ocean Circulation

Natural climatic variability resulting from ocean-atmo-
sphere interactions such as the El Nifio-Southern Oscillation
(ENSO), Pacific Decadal Oscillation (PDO), and North
Atlantic Oscillation/Northern Hemisphere Annular Mode
result in changes in open ocean productivity, shifts in the
distribution of organisms, and modifications in food webs
that foreshadow potential consequences of accelerated cli-
mate change (e.g., Mantua and others 1997; McGowan and
others 1998). These recurring patterns of ocean-atmosphere
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Table 1 Climate change stressors, affected community or function, biotic response or effects, and location

Climate change stressor

Affected community/function

Biotic response/effects

Location

References

138unadg @

Ocean warming

Ocean acidification

Sea level rise

Ocean circulation

Physiological processes

Zooplankton, fish, and intertidal
invertebrates

Marine community structure

Reef corals

Coral reef communities

Invertebrates and fishes

Sea urchins, cold-water corals, coralline
algae, and temperate plankton

Reef-building corals and coralline algae

Calcification rate

Intertidal plant communities, e.g.,
mangroves and Spartina salt marshes

Intertidal and dune plant communities:
nutrient production, stabilization of
substrata, and provision of refuges and
nurseries

Projected 35-70% loss of barrier islands
and sandy beaches (next 100 years)

Marine communities

Enzyme reactions, reproductive
timing, etc.

Poleward range shifts

Altered larval dispersal, competitive
interactions, and trophic interactions
and webs

Coral bleaching because of high sea
surface temperatures

Increasing frequency and severity
of coral reef mass bleaching events

Reduced metabolic rates, growth,
and survivorship

Reduced calcification

Reduced calcification

17-35% decline by 2100

Inland distribution shifts

Depletion or loss because of coastline
development that interferes with plant
migrations

Reduced nesting grounds for key species
such as sea turtles and birds

Potential changes in connectivity
(nutrient flux and larval dispersal)

Near surface
California N. Atlantic

Widespread

Tropics and subtropics

Tropics and subtropics

Widespread

Widespread

Tropics

Widespread

Widespread

Widespread

Widespread

Widespread

Fields and others (1993), Roessig and
others (2004), Harley and others (2006)

Walther and others (2002)

Barry and others (1995), Roessig and others
(2004), Precht and Aronson (2004),
O’Connor and others (2007)

Wilkinson (1998, 2000, 2002), Fitt and
others (2001), Donner and others (2005,
2007)

Smith and Buddemeier (1992), Wilkinson
(1998, 2000), Hoegh-Guldberg (1999),
Hughes and others (2003), Douglas
(2003), Done and Jones (2006)

Michaelidis and others (2005), Shirayama
and Thornton (2005), Pane and Barry
(2007)

Hoegh-Guldberg (1999), Kleypas and
others (1999, 2006), Hughes and others
(2003), Feely and others (2004), Kleypas
and Langdon (2006)

Kleypas and others (1999, 2006), Feely and
others (2004), Orr and others (2005),
Kleypas and Langdon (2006)

Hoegh-Guldberg (1999), Kleypas and
others (1999), Hughes and others (2003),
Orr and others (2005)

Scavia and others (2002), Harley and others
(2006)

Scavia and others (2002), Galbraith and
others (2002), Harley and others (2006)

Scavia and others (2002)

Bakun (1990), McPhaden and Zhang
(2002), Snyder and others (2003),
McGregor and others (2007)

CLO1
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variability have very different behaviors in time; ENSO
events persist for 6-18 months and have major impacts in
the tropics whereas the PDO occurs over a much longer time
frame of 20-30 years and has primary effects in the northern
Pacific (Mantua and others 1997). Regardless of the tem-
poral scale and region of impact, these natural modes of
climate variability have existed historically, independent of
anthropogenically driven climate change. These climate
phenomena may act in tandem with or in opposition to
human-induced alterations, with consequences that are dif-
ficult to predict (Philip and van Oldenborgh 2006; Table 1).
While there is no clear indication that ocean circulation
patterns have changed (Bindoff and others 2007), modifi-
cations could have large effects within and among ecosys-
tems through nutrient and pollutant fluxes, larval dispersal,
and other factors. Considering that there is evidence for
warming of Southern Ocean mode waters and Upper Cir-
cumpolar Deep Waters from 1960-2000, changes in oceanic
current and upwelling patterns are likely in the future
(Bindoff and others 2007). The direction that these changes
will take, however, is not evident.

Lovelace and McPherson (1998), Baldwin
(1994), Lovelace and McPherson (1998)

and others (2001)
Davis and others (1994), Tilmant and others

(1994), McCoy and others (1996),

Davis and others (1994), Tilmant and others
(2002)

Moore and others (1997), Scavia and others

References
IPCC (2007a)

Tropics and subtropics
precipitation

Areas with increased

Location
Southern U.S
Southern U.S.

Storm Intensity

Whether or not storm frequency has changed over time is
not clear because of large natural variability from such
climate drivers as the ENSO (IPCC 2007a). However, since
the mid-1970s there has been a trend toward longer storm
duration and greater storm intensity (IPCC 2007a). Inten-
sification of storms likely will cause increasing physical
damage to coastal ecosystems, especially mangrove, marsh,
seagrass, and coral reef habitats (Table 1), which may be
exacerbated by rising sea levels in many areas. Even 30—
60 days after storms, some areas still experienced delete-
rious environmental impacts (Table 1). In some instances,

mangrove peat soils, and elevated
concentrations of ammonia, dissolved
phosphate, and dissolved organic carbon

Increased stratification, increased flushing,
and reduced productivity

Biotic response/effects
Increased turbidity, breakdown of

Physical damage
Physical damage

& algal blooms further increased turbidity while driving down
E dissolved-oxygen concentrations (i.e., caused eutrophica-
gl - g - tion), resulting in mortalities in fish and invertebrate
g g = g - populations (Tilmant and others 1994; Lovelace and
“:i % 2 % :Z McPherson 1998). Increased erosion from storms may also
ER R 3 = result in the smothering of coral reefs and seagrass beds.
8| g ¢ 8 = Freshwater Influx
AR > 2
5|2 & 2 s
= E g = e Observations indicate that changes in the amount, intensity,
<|» = ” - frequency, and type of precipitation are occurring world-
) wide (IPCC 2007a). Consistent with observed changes in
g f‘; . precipitation and water transport in the atmosphere, large-
é % 2 % scale trends in oceanic salinity have become evident for the
§ g £ g period 1955-1998 (Bindoff and others 2007). These trends
- | g g § are manifested as lowered salinities at subpolar latitudes
= é g Z and increased salinities in shallower parts of the tropical
e8I 3 i3 and subtropical oceans.
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In addition to altering salinity in major oceanic water
masses, changes in precipitation patterns can have signifi-
cant impacts in estuarine and other nearshore environ-
ments. For instance, in regions where climate change
results in elevated rainfall, increased runoff may cause
greater stratification of water layers within estuaries, less
water column mixing and thus lower rates of nutrient
exchange among water layers, and significantly reduced
productivity because phytoplankton populations may be
flushed from the system faster than they can grow and
reproduce (Table 1). On the other hand, estuaries that are
located in regions with lower rainfall may also show
decreased productivity because of lower nutrient influx.
Thus, the relationship between precipitation and marine
ecosystem health is complex and difficult to predict.

Another source of fresh water is melting of polar ice
(IPCC 2007a). In the Atlantic Ocean, accelerated melting
of Arctic ice and the Greenland ice sheet are predicted to
continue producing more freshwater inputs that may alter
oceanic circulation patterns (Dickson and others 2002;
Curry and others 2003; Curry and Mauritzen 2005; Peter-
son and others 2006; Greene and Pershing 2007; Boes-
senkool and others 2007).

Climate Change Interactions with “Traditional”
Stressors of Concern

Land-Based Sources of Pollution

Marine water-quality degradation and pollution stem pri-
marily from land-based sources, with major contributions
to coastal watersheds and water-quality deterioration fall-
ing into two broad categories: point-source pollution and
non-point-source pollution. Point-source pollution from
factories, sewage treatment plants, and farms often flows
into nearby waters. In contrast, marine non-point-source
pollution originates from coastal urban runoff where the
bulk of the land is paved or covered with buildings. These
impervious surfaces prevent soils from capturing runoff,
resulting in the input of untreated pollutants (e.g., fuels,
oils, plastics, metals, insecticides, antibiotics) to coastal
waters. Increased terrestrial runoff due to more intense
storm events associated with climate change may increase
land-based water pollution from both of these sources. In
some areas, increased groundwater outflows may also
contribute to coastal pollution.

Deterioration and pollution of coastal watersheds can
have far-reaching effects on marine ecosystems, for
example, the Gulf of Mexico “dead zone” that occurs each
summer (Table 2). This mass of hypoxic water has its
origins in the increased nitrate flux coincident with the
exponential growth of fertilizer use that has occurred since

@ Springer

the 1950s in the Mississippi River basin. Pollution has been
one of the major drivers of decreases in the health of
marine ecosystems such as coral reefs and seagrass and
kelp beds (Table 2). Because pollution has usually been
more local in scope, adopting integrated ocean and coastal
management has enabled MPA and watershed managers to
work cooperatively toward managing pollution (Cicin-Sain
and Belfiore 2005).

The addition of climate change stressors such as
increased oceanic temperature, decreased pH, and greater
fluctuations in freshwater influxes and salinity may exac-
erbate potentially deleterious effects of pollution (Coe and
Rogers 1997; Carpenter and others 1998; Khamer and others
2000; Burton and Pitt 2001; Sobel and Dahlgren 2004; Orr
and others 2005; Breitburg and Riedel 2005; O’Connor and
others 2007; IPCC 2007a). In regions where climate change
causes precipitation and freshwater influxes to increase, the
scale of water quality degradation may expand. Coral
bleaching from the combined stresses of climate change and
local pollution (e.g., high temperature and sedimentation)
has already been observed (Jackson and others 2001;
Hughes and others 2003; Pandolfi and others 2003). Iden-
tifying those stressors with the greatest effect is not trivial,
and research in coral genomics may provide diagnostic tools
for identifying stressors in coral reefs and other marine
communities (e.g., Edge and others 2005, 2008).

Overfishing and Destructive Fishing Practices

Commercial fishing has ecosystem effects on three fronts:
overfishing, often of multiple fishery species; physical
impacts on habitats caused by fishing gear such as trawls,
seines, and dredges and fishing practices that use dynamite
or cyanide; and incidental take of non-targeted species (by-
catch) (Table 2). Fishery populations that are overstressed
and overfished exhibit greater sensitivity to climate change
and other anthropogenically derived stressors than healthy
populations (Hughes and others 2005). Overfishing can
reduce mean life span as well as lifetime reproductive
success and larval quality, making fished species more
susceptible to both short- and long-term perturbations (such
as changes in prevailing current patterns) that affect
recruitment success (Pauly and others 1998, 2003; Jackson
and others 2001; Dayton and others 2002; Sobel and
Dahlgren 2004; Estes 2005; Law and Stokes 2005; Steneck
and Sala 2005; O’Connor and others 2007). Changing
climatic regimes can also influence species’ distributions,
which are set in part by physiological tolerances to tem-
perature, dissolved oxygen, pH, and salinity. Because rates
of climate change appear to exceed the capacity of many
commercially fished species to adapt to changing local
conditions, species may shift their ranges in accordance
with physiological thresholds and may ultimately be forced
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Table 2 Traditional stressors, affected community or function, biotic response or effects, and location

Traditional stressor

Affected community/function

Biotic response/effects

Location

References

Land-based sources
of pollution

Overfishing and
destructive fishing
practices

Nonindigenous/invasive
species

Diseases

Benthic and pelagic communities in the
“dead zone”

Coral reefs and seagrass and kelp beds

Coral reefs
20% of coral reefs

One-third of coral reefs

Living benthic and geologic structures

Commercial fishery stocks

Invertebrates, fishes, sea turtles, marine
mammals, birds, and early life stages
of commercially targeted species

Coral reef community
Reef fish community

Marine and estuarine communities

Structure and function of marine
ecosystems

Changes in species diversity, community
structure, and benthic-pelagic trophic links

Decreased ecosystem health

30-60% decrease in coral diversity

Toxic algal blooms, macroalgal inhibition
of larval recruitment

Blocked light, smothering, impede coral
growth, kill corals

Reduced habitat complexity and likely
changes in associated communities

At least 26% of fisheries overexploited

Mortality as incidental bycatch

Widespread damage
60% of coral reefs

Shifts in relative abundance and distribution
of native species and changes in species
richness and community structure

Abundance and diversity of vertebrates (e.g.,
mammals, turtles, fish), invertebrates (e.g.,
corals, crustaceans, echinoderms, oysters),
and plants (e.g., seagrasses, kelps)

1-125 km offshore of
Louisiana and Texas
Widespread

Indonesia
Southeast Asia

Caribbean

Widespread

U.S. waters

Widespread

Southeast Asia
Caribbean
Widespread

Widespread

Rabalais and others (2002)

Jackson and others (2001), Hughes and others
(2003), Pandolfi and others (2003)

Edinger and others (1998)
Burke and others (2002)

Burke and Maidens (2004)

Engel and Kvitek (1998), Thrush and Dayton
(2002), Dayton and others (2002), Hixon
and Tissot (2007)

Pauly and others (1998), NRC (1999),
Jackson and others (2001), POC (2003),
NMES (2005), Lotze and others (2006)

Condrey and Fuller (1992), Norse (1993),
Sobel and Dahlgren (2004), Hiddink and
others (2006)

McManus (1997)
Burke and Maidens (2004)

Sousa (1984), Moyle (1986), Mills and others
(1993), Baltz and Moyle (1993), Carlton
(1996, 2000), Marchetti and others (2004)

Harvell and others (1999, 2002)
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to extend past the boundaries of their “known” native
ranges, becoming seemingly invasive elements (Murawski
1993; Walther and others 2002; Roessig and others 2004;
Perry and others 2005; Harley and others 2006).

Commercial exploitation of even a single keystone
species, such as a top consumer, can destabilize ecosystems
by decreasing redundancy and making them more suscep-
tible to climate change stressors (Hughes and others 2005).
Examples of such ecosystem destabilization through
overfishing abound, including the formerly cod-dominated
system of the western North Atlantic (Steneck 1997; Ste-
neck and others 2004), and the fish grazing community on
Caribbean coral reefs (e.g., Frank and others 2005; Mumby
and others 2006, 2007).

Interestingly, the theoretical framework that links no-take
marine reserves with improved coral condition has been a
matter of some debate (e.g., Jackson and others 2001; Grigg
and others 2005; Pandolfi and others 2005; Aronson and
Precht 2006; Jackson 2008). This stems from the nature of
cascading effects triggered by reserves, which may involve
increases in herbivorous reef fishes in areas where they are
fished; increased herbivory reduces macroalgae that can
overgrow corals and inhibit coral recruitment. However,
reserves also protect predators, so declines in herbivorous
fish might occur unless there is an escape in size from pre-
dation and the rate of herbivory actually increases (Mumby
and others 2006). Data from field studies provide conflicting
results. Mumby and others (2006) showed that increased
densities of large herbivorous fish in a marine reserve
reduced algal growth after mass bleaching caused extensive
coral mortality, but such increases in herbivore densities do
not always occur after protection is provided (Mosquera and
others 2000; Graham and others 2003; Micheli and others
2004; Robertson and others 2005). Further, Burkepile and
Hay (2008) have documented important differences in
grazing behavior among three Caribbean parrotfishes,
highlighting the importance of herbivore community struc-
ture to grazing effects. Finally, there is widespread belief
that the 1983—1984 mass mortality of Diadema antillarum—
a major grazing sea urchin on Caribbean reefs—was a sig-
nificant proximal cause of coral reef decline throughout the
Caribbean. However, as reported in Aronson and Precht
(2006) half the decline in live coral cover throughout the
Caribbean reported by Gardner and others (2003) occurred
before this die-off, and immediately after the die-off coral
cover remained unchanged. Subsequent declines in cover
were associated with mass coral bleaching events (1987,
1997-1998) and possibly with continued losses to diseases.
It is important to highlight this complexity because it
emphasizes how much is unknown about basic ecological
processes on coral reefs and consequently how much needs
to be learned about whether no-take marine reserves work
effectively to enhance ecosystem resilience when disease
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and bleaching remain significant sources of coral mortality
(Aronson and Precht 2006; Bruno and Selig 2007).

Nonindigenous/Invasive Species

Invasive species threaten all marine and estuarine com-
munities (Table 2). Currently, an estimated 2% of extinc-
tions in marine ecosystems are related to invasive species
while 6% are the result of other factors including climate
change, pollution, and disease (Dulvy and others 2003).
Principal mechanisms of introduction vary and include
both accidental and intentional release (Ruiz and others
2000; Carlton 2000; Hare and Whitfield 2003).

Some native species, particularly rare and endangered
ones with small population sizes and gene pools, are unli-
kely to be able to adapt quickly enough or shift their ranges
rapidly enough to compensate for the changing climatic
regimes proposed by current climate change models (IPCC
2007a). These native species will likely have their com-
petitive abilities compromised and be more susceptible to
displacement by invasive species, and therefore should be
considered for stronger protective measures by MPA man-
agers. Increased seawater temperatures resulting from cli-
mate change may also enable introduced species to spawn
earlier and for longer periods, thus increasing their popu-
lation growth rates relative to natives while simultaneously
expanding their range (Carlton 2000; McCarty 2001; Stac-
howicz and others 2002; Marchetti and others 2004). Fur-
thermore, the same characteristics that make species
successful invaders may also make them pre-adapted to
respond to, and capitalize on, climate change. As one
example, Indo-Pacific lionfish (Pterois volitans and P.
miles) are now widely distributed and abundant off the
southeastern coast of the United States and in the Bahamas
less than 10 years after being first observed off Florida
(Whitfield and others 2007; Snyder and Burgess 2007;
Freshwater and others 2009). One of the few factors limiting
their spread is intolerance to minimum water temperatures
during winter (Kimball and others 2004); ocean warming
could facilitate depth and range expansion in these species.

Diseases

Pathogen outbreaks or epizootics spread rapidly due to the
lack of dispersal barriers in some parts of the ocean and the
potential for long-term survival of pathogens outside the host
(Table 2). Many pathogens of marine taxa such as coral
viruses, bacteria, and fungi respond positively to temperature
increases within their physiological thresholds (Porter and
others 2001; Kim and Harvell 2004; Munn 2006; Mydlarz
and others 2006; Boyett and others 2007). However, it is
noteworthy that white-band disease was the primary cause
(though not the only cause) of reduced coral cover on
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Caribbean reefs from the late 1970s through the early 1990s
(Aronson and Precht 2006). That outbreak did not correspond
to a period of particularly elevated temperature [R. Aronson,
personal communication; but see Lesser and others (2007)].

Exposure to disease compromises the ability of species
to resist other anthropogenic stressors and vice versa
(Harvell and others 1999, 2002). For example, in 1998, the
most geographically extensive and severe coral bleaching
ever recorded was associated with the high anomalies in
sea surface temperatures associated with an ENSO event
(Hoegh-Guldberg 1999; Wilkinson and others 1999;
Mydlarz and others 2006). In some species of reef-building
corals and gorgonians, this bleaching event was thought to
be accelerated by opportunistic infections (Harvell and
others 1999, 2001). Several pathogens—such as bacteria,
viruses, and fungi that infect such diverse hosts as seals,
abalone, and starfish—show possible onset with warmer
temperatures (reviewed in Harvell and others 2002) and
some coral species may become more susceptible to dis-
ease after bleaching events (Whelan and others 2007). The
mechanisms for pathogenesis, however, are largely
unknown. Given that exposure to multiple stressors may
compromise the ability of marine species to resist infec-
tion, the most effective means of reducing disease inci-
dence under climate change may be to minimize impacts of
stressors such as pollution and overfishing.

Options for Marine Protected Area Management
in the Context of Climate Change

Options for management of MPAs in response to climate
change can be organized at two levels: actions at existing

sites and establishment of new sites, particularly if they
are arranged as networks (Table 3). Within MPAs, man-
agers can increase efforts to ameliorate existing anthro-
pogenic stressors with a goal of reducing the overall load
of multiple stressors (Breitburg and Riedel 2005). For
example, the concept of protecting or enhancing coral reef
resilience has been proposed to help ameliorate negative
consequences of coral bleaching (Hughes and others 2003,
2005; West and Salm 2003; Marshall and Schuttenberg
2006a; Salm and others 2006). Under this approach,
resilience is an ecosystem property that can be managed,
and is defined as the ability of an ecosystem to resist or
absorb disturbance while maintaining key functions and
processes (Gunderson 2000; Nystrom and others 2000;
Hughes and others 2003; McLeod and others 2008b).
Managing for resilience includes addressing causes of
disturbance and decline at a local scale such as overfishing
and pollution, identifying and protecting potentially resil-
ient areas, and designing networks of MPAs to address
threats at broader scales. Networks of MPAs should be
designed to take advantage of properties of systems of
sites. These properties include connectivity, protection of
ecologically critical areas, and replication and represen-
tation of multiple habitat types (Salm and others 2006;
McLeod and others 2008b).

It is important to emphasize that variable and complex
effects of climate on oceanographic processes and pro-
duction (Soto 2002; Mann and Lazier, 2006) present MPA
managers with major uncertainties about climate change
impacts and effective management approaches. Neverthe-
less, it is imperative to integrate climate change into MPA
management plans using the best available scientific
information.

Table 3 Management options for MPA managers in the context of climate change (see McLeod and others 2008b)

v/ Manage human stressors such as fishing and inputs of nutrients, sediments, and pollutants within MPAs.

v/ Improve water quality by raising awareness of adverse effects of land-based activities on marine environments, implementing integrated
coastal and watershed management, and developing options for advanced wastewater treatment.

v’ Manage functional species groups necessary to maintaining the health of reefs and other ecosystems.

v Identify and protect areas that appear to be resistant to climate change effects or to recover from climate-induced disturbances.

v Identify and protect ecologically significant (“critical”) areas such as nursery grounds, spawning grounds, and areas of high species diversity.

v Identify ecological connections among ecosystems and use them to inform the design of MPAs and management decisions such as protecting
resistant areas to ensure sources of recruitment for recovery of populations in damaged areas.

v Design MPAs with dynamic boundaries and buffers to protect breeding and foraging habits of highly migratory and pelagic species.

v Establish dynamic MPAs defined by large-scale oceanographic features such as oceanic fronts where changes in types and abundances of

organisms often occur.

v/ Maximize habitat heterogeneity within MPAs and consider protecting larger areas to preserve biodiversity, ecological connections among

habitats, and ecological functions.

v Include entire ecological units (e.g., coral reefs with their associated mangroves and seagrasses) in MPA design to help maintain ecosystem

function and resilience.

v Ensure that the full breadth of habitat types is protected (e.g., fringing reef, fore reef, back reef, patch reef).

v Replicate habitat types in multiple areas to spread risks associated with climate change.
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Ameliorate Existing “Traditional” Stressors

Managers may be able to increase resilience to climate
change within MPAs by reducing impacts of local- and
regional-scale stressors, such as fishing, input of nutrients,
sedimentation and pollutants, and degraded water quality.
While this concept is logical and has considerable appeal,
evidence in support of this approach is limited. Behrens and
Lafferty (2004) found that kelp forest ecosystems in no-take
marine reserves were more resilient to ocean warming than
in reference areas as a result of changes in trophic structure
of communities in and around reserves. In reference areas
where predators such as spiny lobster were fished, herbiv-
orous sea urchin prey increased in abundance and consumed
giant kelp and other algae. In reserves where fishing was
prohibited, lobster populations were larger, urchin popula-
tions were diminished, and kelp forests persisted over a
period of 20 years, including four ENSO cycles (Behrens
and Lafferty 2004). Although MPAs have been shown to be
effective at mitigating stresses at local scales, they may be
less effective at addressing global climate change threats
such as mass bleaching events (see Bruno and Selig 2007)
unless they are designed specifically to address resilience.

Managing water quality has been identified as a key
strategy for maintaining ecological resilience (Salm and
others 2006; Marshall and Schuttenberg 2006a). In the
Florida Keys National Marine Sanctuary and the Great
Barrier Reef Marine Park water quality protection is rec-
ognized as an essential component of management (US-
DOC 1996; Grigg and others 2005). Strong circumstantial
evidence links poor water quality to increased macroalgal
abundances, increased bioerosion, and higher susceptibility
to some diseases in corals and octocorals (Fabricius and
De’ath 2004). Addressing sources of pollution, especially
nutrient enrichment that can lead to increased algal growth
and reduced coral settlement, is critical to ecosystem
structure and function. In addition to limiting point-source
pollution within an MPA, sources from beyond MPA
boundaries should be controlled as much as possible
through collaborations with appropriate authorities in
adjacent areas (see Crowder and others 2006). For exam-
ple, MPA managers should work with land and watershed
managers to develop and implement strategies to reduce
land-based pollution, decrease nutrient and sediment run-
off, eliminate the use of persistent pesticides, and increase
filtration of effluent through wetlands to improve quality of
coastal waters. Actions such as these should be coupled
with research to investigate their efficacy.

Another mechanism that may help maintain resilience of
coral reef ecosystems is the management of functional
groups, specifically herbivores (Hughes and others 2003;
Bellwood and others 2004; McLeod and others 2008b).
Bellwood and others (2004) identified three functional
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groups of herbivores that assist in maintaining coral reef
resilience: bioeroders, grazers, and scrapers. These groups
work together to break down dead coral to allow substrate
for recruitment, graze macroalgae, and reduce the devel-
opment of algal turfs to provide substrata suitable for coral
settlement. Attention must also be paid to the roles of
individual species within these groups (Burkepile and Hay
2008). Bellwood and others (2006) identified the need to
protect both the species that prevent phase shifts from coral-
to algal-dominated reefs and species that help reefs recover
from algal dominance. While parrotfishes and surgeonfishes
appear to play a critical role in preventing phase shifts to
macroalgae [but see Ledlie and others (2007)], they may
have limited ability to reverse such a shift. In one study,
phase-shift reversal from macroalgal- to a coral- and epi-
lithic algal-dominated state surprisingly was caused by a
single batfish species (Platax pinnatus) rather than par-
rotfishes and other herbivores (Bellwood and others 2006).
Although protecting functional groups may be a com-
ponent of MPA management to enhance resilience,
understanding which groups should be protected requires a
detailed knowledge of species and interactions that is not
often available. Coral reefs appear to require key herbi-
vores in sufficient numbers to reduce macroalgae and
enhance coral settlement, whereas kelp forests may require
key predators on herbivores to reduce herbivory and pro-
mote kelp recruitment and growth. Manipulating functional
groups should be field tested at different locations to verify
their appropriateness. As a precaution, managers should
strive to maintain the maximum number of species, par-
ticularly in the absence of detailed ecological data.

Protect Potentially Resilient Areas

Marine ecosystems face potential loss of habitat structure as
climate change progresses (e.g., coral reefs, seagrass beds,
kelp forests, and deep coral communities) (see Hoegh-
Guldberg 1999; Steneck and others 2002; Roberts and others
2006; Orth and others 2006). It is likely that climate change
contributes to mass coral bleaching events (Reaser and
others 2000), which became global in 1998 (Wilkinson
1998, 2000) and have affected large regions in subsequent
years (Wilkinson 2002, 2004; Whelan and others 2007). The
amount of live coral has declined dramatically in the
Caribbean region over the past 30 years as a result of
bleaching, diseases, and hurricanes (Gardner and others
2003, 2005). In the Florida Keys, some fore-reef environ-
ments that formerly supported dense growths of coral are
now depauperate, and highest coral cover is in patch reef
environments (Porter and others 2002; Lirman and Fong
2007). Irrespective of the mechanism—resistance, resil-
ience, or exposure to relatively low levels of past environ-
mental stress—these patch reefs are good candidates for
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additional protective measures because they may have high
potential to survive climate stress.

Done (2001; see also Marshall and Schuttenberg 2006b)
presented a decision tree for identifying areas that would be
suitable for MPAs under a global warming scenario. Two
types of favorable outcomes included reefs that survived
bleaching (i.e., were resilient) and reefs that were not
exposed to elevated sea surface temperatures (e.g., may be
located within refugia such as areas exposed to upwelling or
cooler currents). This type of decision tree has already been
adapted to guide site selection for mangroves (McLeod and
Salm 2006), and could be extended further for other habitat
types such as seagrass beds and kelp forests.

In addition, thermally stressed corals may exhibit less
bleaching and higher survival if they are shaded during
periods of elevated temperatures (West and Salm 2003;
Hoegh-Guldberg and others 2007b). On a small scale, MPA
managers may be able to select sites that are naturally sha-
ded by high islands, emergent rocks or corals overhead. For
example, in the Rock Islands of Palau, corals in more shaded
parts of the reef survived a bleaching event better than those
in more exposed parts of the reef (West and Salm, 2003).
MPA managers may also consider shading areas during
bleaching events to reduce UV radiation impacts and overall
stress (Hoegh-Guldberg and others 2007b). On a larger
scale, managers should protect mangrove shorelines and
support restoration of areas where mangroves have been
damaged or destroyed because tannins and dissolved
organic compounds from decaying mangrove vegetation
contribute to absorbing light and reducing stress on adjacent
coral reefs (Hallock 2005). Extensive discussions of coral
bleaching and management responses are provided in
Marshall and Schuttenberg (2006a, b), Johnson and Mar-
shall (2007), and McLeod and others (2008b).

Develop MPA Networks

The concept of networks of MPAs has gained appeal for a
number of reasons, and network design to address impacts of
climate change was recently reviewed by McLeod and others
(2008b). Emergent properties of systems such as represen-
tation, replication, and connectivity (Ballantine 1997; NRC
2001; Roberts and others 2003a; West and Salm 2003; Salm
and others 2006; McLeod and others 2008b) are attractive to
MPA managers who have realized that relatively small,
isolated protected areas may not adequately protect ecosys-
tem structure and function. Also, networks likely lower the
risk of catastrophic habitat loss (Palumbi 2002; Allison and
others 2003), which may provide a form of “insurance” for
management of biogenically structured, slow-growing hab-
itats such as coral reefs. Finally, networks may provide
functional wilderness areas sufficiently extensive to resist
fundamental changes to ecosystems (Kaufman and others

2004). While MPA networks have been recognized as a
valuable tool to conserve marine resources in the face of
climate change, there have been a number of challenges to
their implementation (Pandolfi and others 2005; Mora and
others 2006). A set of recommendations has been developed
to aid MPA network design and implementation, which
include MPA size and spacing, risk spreading, protection of
critical areas, connectivity, ecosystem function, and eco-
system-based management (McLeod and others 2008b).

Guidelines for the minimum size of MPAs and no-take
marine reserves, and spacing between adjacent MPAs, vary
depending on their goals (Hastings and Botsford 2003). For
example, Friedlander and others (2003) suggested that no-
take zones should measure ca. 10 km® to ensure viable
populations of a range of species in the Seaflower Bio-
sphere Reserve, Colombia. Palumbi (2003) concluded that
marine reserves tens of km apart may exchange larvae in a
single generation. Shanks and others (2003) similarly
concluded that marine reserves spaced 20 km apart would
allow larvae to be carried to adjacent reserves. The Science
Advisory Team to California’s Marine Life Protection Act
Initiative recommended spacing highly protected MPAs,
such as marine reserves, within 50-100 km in order to
accommodate larval dispersal distances of a wide range of
species of interest. Halpern and others (2006) corroborated
these findings using an uncertainty-modeling approach.

It has been suggested that no-take zones measuring a
minimum of 20 km in diameter may accommodate short-
distance dispersers in addition to including a significant
portion of local benthic fish populations, thus generating
fisheries benefits (Shanks and others 2003; Fernandes and
others 2005; Mora and others 2006; McLeod and others
2008b). A single network design is unlikely to satisfy the
potential dispersal ranges for all species; Roberts and others
(2003b) recommended an approach using various sizes and
spacing of MPAs in a network to accommodate the diversity
of dispersal ranges, which likely will be all the more nec-
essary in the context of further variabilities caused by cli-
mate change. Recommendations to protect highly migratory
and pelagic species include designing MPAs to protect
predictable breeding and foraging habits, ensuring these
have dynamic boundaries and extensive buffers, and
establishing dynamic MPAs that are defined by the extent
and location of large-scale oceanographic features such as
oceanic fronts where changes in types and abundances of
marine organisms often occur (Hyrenbach and others 2000).

Risk spreading to minimize the likelihood of loss of
habitat types (Salm and others 2001; West and Salm 2003;
McLeod and others 2008b) involves protection of multiple
samples of each type (Hockey and Branch 1994; Ballantine
1997; Roberts and others 2001, 2003b; Friedlander and
others 2003; Salm and others 2006; Wells 2006). Examples
of marine habitat types include coral reefs with varying
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degrees of exposure to wave energy (e.g., offshore, mid-
shelf, and inshore reefs) and a range of types of mangrove
forests (riverine, basin, and fringe forests in areas of
varying salinity, tidal fluctuation, and sea level) (Salm and
others 2006).

There are several recommendations about proportions or
numbers of habitat types to protect. For example, it has
been recommended that more than 30% of appropriate
habitats should be included in no-take marine reserves
(Bohnsack 2000). In 2004, the Great Barrier Reef Marine
Park Authority increased the area of no-take marine
reserves from less than 5% to approximately 33% of the
area of the Marine Park, ensuring that at least 20% of each
bioregion (area of every region of biodiversity) was zoned
as no-take (Day and others 2002; Fernandes and others
2005). Also, Airamé and others (2003) recommended a
network of three to five no-take zones in each biogeo-
graphic region of the Channel Islands National Marine
Sanctuary, comprising approximately 30-50% of the area,
in order to conserve biodiversity and contribute to sus-
tainable fisheries in the region. An additional consideration
is placement of reserves, which could be designed to
minimize the risk of loss to catastrophic disturbances such
as mass bleaching events in order to maximize achieving
conservation targets (Game and others 2008).

Biologically or ecologically significant “critical areas”
should be protected; critical areas include nursery habitats,
spawning aggregations or areas, areas of high species
diversity, heterogeneous habitat clusters, and areas that are
not exposed to extremes of climate change (Allison and
others 1998; Sale and others 2005; Sadovy 2006; McLeod
and others 2008b). For example, areas of coral reefs that
appear to be resilient to climate change should be provided
with a high level of protection to help ensure a secure source
of recruitment to damaged areas within an MPA network
(Salm and Coles 2001). Responses to past bleaching events
and other disturbances may provide insights into resilience;
some coral colonies may have genetic characteristics that
confer resistance to bleaching or may avoid bleaching
because of environmental factors such as currents and
shading that provide protection from temperature and/or
irradiance anomalies. Highly protected critical areas should
be as large as possible to maximize their effectiveness as
sources of recruits (Palumbi and others 1997; Bellwood and
Hughes 2001; Salm and others 2006).

Connectivity via larval dispersal and the movement of
adults and juveniles has been investigated and reviewed
extensively (e.g., Roberts 1997; Crowder and others 2000;
Stewart and others 2003; Roberts and others 2003b; Cowen
and others 2006; Salm and others 2006; Steneck 2006;
McLeod and others 2008b). In addition to designing MPA
networks for connectivity among different sites containing
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a particular habitat type, connectivity among habitat types
such as mangroves, coral reefs, and seagrass beds (Ogden
and Gladfelter 1983; Roberts 1996; Nagelkerken and others
2000; Mumby and others 2004; McLeod and others 2008b).

Although maintaining connectivity within and between
MPAs may help maintain marine biodiversity, ecosystem
function, and resilience, many challenges exist. For
example, the same currents and pathways that enable larval
recruitment can expose an ecosystem to invasive species,
pathogens, parasites, and pollutants, which can undermine
the resilience of a system (McClanahan and others 2002).
Numerous challenges also exist in estimating larval dis-
persal patterns. Although there have been detailed studies
addressing dispersal potential of marine species based on
their larval biology (e.g., Shanks and others 2003; Kinlan
and Gaines 2003), little is known about where in the oceans
larvae go and how far they travel. Larval duration in the
plankton also varies from minutes to years, and the more
time propagules spend in the water column, the farther they
tend to be dispersed (Shanks and others 2003; Steneck
2006). Evidence from hydrodynamic models and genetic
structure data indicates that in addition to large variation of
larval dispersal distances among species, the average scale
of dispersal can vary widely—even within a given spe-
cies—at different locations in space and time (e.g., Cowen
and others 2003; Sotka and others 2004; Engie and Klinger
2007). Some information suggests long-distance dispersal
is common, but other emerging information suggests that
larval dispersal may be limited (Jones and others 1999,
2005; Swearer and others 1999; Warner and others 2000;
Thorrold and others 2001; Palumbi 2003; Paris and Cowen
2004). Additional research will be required to better
understand where and how far larvae travel in various
marine ecosystems.

For both terrestrial and marine systems, species diversity
often increases with habitat diversity, and species richness
increases with habitat complexity; the greater the variety of
habitats protected, the greater the biodiversity conserved
(Friedlander and others 2003; Carr and others 2003). High
species diversity may increase ecosystem resilience by
ensuring sufficient redundancy to maintain ecological
processes and protect against environmental disturbance
(McNaughton 1977; McClanahan and others 2002). This is
particularly the case in the context of additive or syner-
gistic stressors. Maximizing habitat heterogeneity is critical
for maintaining ecological health, thus MPAs should
include large areas and depth gradients (Done 2001; Han-
sen and others 2003; Roberts and others 2003a). By pro-
tecting a representative range of habitat types and
communities, MPAs have a higher potential to protect a
region’s biodiversity, biological connections between
habitats, and ecological functions (Day and others 2002).
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Table 4 Integrate climate change into MPA planning, management, and evaluation: The Great Barrier Reef as an example

The Great Barrier Reef Marine Park Authority (GBRMPA) is exemplary with regard to the degree to which it has inawcorporated climate
change into its management program. GBRMPA has implemented a comprehensive Climate Change Response Program
(http://www.gbrmpa.gov.au/, accessed 23 May 2008) that establishes guidelines for other MPA managers to consider. A thorough
assessment of vulnerabilities to climate change (Johnson and Marshall 2007) set the stage for management recommendations. “A Reef
Manager’s Guide to Coral Bleaching” (Marshall and Schuttenberg 2006a) provided information on the causes and consequences of coral
bleaching and management strategies to help local and regional reef managers reduce this threat to coral reef ecosystems. GBRMPA has
expanded its area of no-take management of human uses from a total proportion of less than 5 to 33%, using a representative areas
approach (Day and others 2002; Fernandes and others 2005). It remains to be seen whether this expansion of no-take zoning within the
Great Barrier Reef Marine Park will influence susceptibility of coral reefs to mass bleaching events (see Bruno and Selig 2007).

Integrate Responses to Impacts of Climate Change in
MPA Management

Scientists and managers involved with coral reef MPAs have
collaborated on a guide about coral bleaching that provides a
number of recommendations to MPA managers (Marshall
and Schuttenberg 2006a). In contrast, impacts of ocean
acidification (Caldeira and Wickett 2003) do not have clearly
articulated management strategies, although efforts are
currently being made to develop these strategies (McLeod
and others 2008a). Further research is needed on impacts of
high concentrations of CO, in the oceans, possible accli-
mation or evolution of organisms in response to changes in
ocean chemistry, and how management might respond (TRS
2005). Possible responses to other climate change stressors
such as sea level rise, ocean circulation, storm intensity, and
freshwater influx also require further research, and may not
have management options as well explored and tested as
those for traditional stressors such as pollution, commercial
fishing, invasive species, and diseases.

Interactions of climate change stressors with traditional
stressors compress the spatial extent of impacts and man-
agement responses from global and regional scales to more
local manifestations.

Nevertheless, we suspect that many management plans
for coral reef and other MPAs do not explicitly address
actions or options in the context of climate change, and we
hope that recommendations provided here and elsewhere
(Table 4) will help fill this gap. Managers and scientists
need to work together closely with stakeholders to consider
regional scenarios of impacts of climate change and eco-
system responses, and determine how best to implement
science-based management responses.
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