Skip to main content

Search the SPREP Catalogue

3 result(s) found.

Sort by

You searched for

  • Author Russell. J.C
    X
  • Collection Biodiversity Conservation
    X
  • Publication Year 2015
    X
Special Issue Article: Tropical rat eradication. Improving the odds: Assessing bait availability before rodent eradications to aid in selecting bait application rates. Biological Conservation. Volume 185, May 2015
Biodiversity Conservation, BRB
Available Online

Berentsen. A.R

,

Brooke. M.L

,

Cuthbert. R.J

,

Griffiths. R.

,

Holmes. N.D

,

Howald. G.R

,

Pitt. W.C

,

Pott. M

,

Ramos-Rend¢n. G

,

Russell. J.C

,

Samaniego-Herrera. A

,

Wegmann. A.S

2015
Rodent eradications undertaken on tropical islands are more likely to fail than eradications undertaken at higher latitudes. We report on 12 independent rodent eradication projects undertaken on tropical islands that utilized the results of an in situ bait availability study prior to eradication to inform, a priori, the bait application rate selected for the eradication. These projects also monitored bait availability during the eradication. The results from our analysis verified the utility of bait availability studies to future rodent eradication campaigns and confirmed the influence of two environmental factors that can affect bait availability over time: precipitation prior to the study and the abundance of land crabs at the study site. Our findings should encourage eradication teams to conduct in-depth assessments of the targeted island prior to project implementation. However, we acknowledge the limitations of such studies (two of the projects we reviewed failed and one removed only one of two rodent species present) and provide guidance on how to interpret the results from a bait availability study in planning an eradication. Study design was inconsistent among the twelve cases we reviewed which limited our analysis. We recommend a more standardized approach for measuring bait availability prior to eradication to provide more robust predictions of the rate at which bait availability will decrease during the eradication and to facilitate future comparisons among projects and islands.
Special Issue Article: Tropical rat eradication. Invasive rat interactions and over-invasion on a coral atoll. Biological Conservation. Volume 185, May 2015
Biodiversity Conservation, BRB
Available Online

Anderson S.H

,

Caut. S

,

Lee. M.

,

Russell. J.C

2015
Invasive rats are found on most island groups of the world, and usually more than one species has invaded. On tropical islands populations of different invasive rat species can co-exist on very small islands, but the population dynamics of such co-existing rat species, their impact on each other, and the mechanisms of coexistence are not well known. This lack of knowledge is a barrier to improving the success rate of tropical island rat eradications. Through an exhaustive trapping eradication campaign on a small tropical island, we study the population structure of historically established Rattus exulans where R. rattus have colonised within the last fifty years and over-invaded. We contrast this R. exulans population with a nearby island population where R. exulans exist alone. Recently invaded R. rattus numerically and morphologically dominate R. exulans; however stable isotope analyses show that the trophic position of R. exulans remains consistent regardless of the presence of R. rattus, once differences in trophic foundations of islands are accounted for. Although the trophic position of both rat species is indistinguishable, R. rattus is able to dominate R. exulans through interference competition. Our eradication attempt was interrupted by a tropical cyclone and ultimately unsuccessful, but there is some evidence that R. rattus reduced control device availability to R. exulans, which has important implications for multi-species control operations.
Special Issue Article: Tropical rat eradication. Trophic roles of black rats and seabird impacts on tropical islands: Mesopredator release or hyperpredation? Biological Conservation. Volume 185, May 2015
Biodiversity Conservation, BRB
Available Online

Le Corre. M.

,

Ringler. D

,

Russell. J.C

2015
Rats contribute to the decline of tropical seabird populations by affecting their breeding success through direct predation of eggs and chicks. When they coexist with other predators, invasive rats may also generate indirect interactions via the changes they impose on the structure of communities and trophic interactions following invasion (‘hyperpredation process’), or when apex predators are eradicated from the ecosystem (‘mesopredator release effect’). Understanding these effects is necessary to implement restoration operations that actually benefit threatened seabird populations. We investigated these processes on two French tropical seabird islands of the western Indian Ocean, Europa and Juan de Nova, where black rats coexist with two different apex predator species (introduced cats and potentially native barn owls). The parallel use of several methods (diet analysis, stable isotopes, seabird monitoring) to identify trophic roles of rats revealed that the direct impact of rats on seabirds was particularly high on Europa where only rats and owls occur, with high consumption of chicks resulting in low breeding success for several seabird species. We also suggested that hyperpredation associated with top-down regulation of cats is occurring on Juan de Nova, although territoriality of cats may buffer this process. Conversely we found evidence that mesopredator release effect is unlikely, irrespective of the apex predator identity. Considering the most likely effects on both islands we provided recommendations on eradication priorities to mitigate the risk of local extinction that seabirds are currently facing.